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Abstract:  Theory implies that the economy responds differently to technology shocks 

that affect the production of consumption versus investment goods.  We estimate industry-level 

technology innovations and use the input-output tables to relax the typical assumptions in the 

investment-specific technical change literature—assumptions that, we find, do not hold in the 

data.  We find that investment-technology improvements are sharply contractionary for hours, 

investment, consumption, and output.  Consumption-technology improvements, on the contrary, 

are expansionary.  Thus, disaggregating technology shocks into consumption and investment-

specific changes yields two shocks that both produce business-cycle comovement, and also 

explain a large fraction of annual changes in GDP and its components.  Most of the responses we 

find are consistent with the predictions of simple two-sector models with sticky prices. 
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I. Introduction 

What shocks drive business cycles?  At a minimum, such shocks must move output, 

consumption, investment and hours worked in the same direction, as this positive comovement is 

a defining characteristic of business cycles.  Technology shocks are attractive candidates, 

because they can reproduce this comovement in simple, general-equilibrium models of 

fluctuations.  But in the data, technology shocks identified using restrictions from one-sector 

models do not produce positive comovement.  In particular, Gali (1999) and Basu, Fernald and 

Kimball (2006) find that technology shocks often raise output and consumption, but lower hours 

worked.  Reviewing this evidence, Francis and Ramey (2005) conclude ―the original technology-

driven … business cycle hypothesis does appear to be dead.‖ 

We revisit the issue of technology shocks and business-cycle comovement because there 

is no consensus in the literature on other shocks that could plausibly account for the bulk of the 

fluctuations that we observe.  (For example, monetary shocks produce the right comovements, 

but are generally estimated to account for a very small fraction of economic volatility.)  Our goal 

is to see whether the conclusions about technology shocks reached earlier might be due to 

imposing the restrictions of a one-sector model of growth and fluctuations in a world where they 

do not apply.  If there are multiple technologies, each affecting a different type of good, might it 

be the case that each type of shock individually generates the proper comovments even though 

their average does not? 

We first show that our hypothesis has a firm basis in economic theory.  Theory tells us 

that the composition of technological change, in terms of the type of final good whose 

production is affected, matters for the dynamics of the economy‘s response to technology 

shocks.  For example, we show that a shock to the technology for producing consumption goods 



 2 

has no interesting business-cycle effects in a standard RBC model.  All of the dynamics of hours 

and investment stressed by RBC theory come from shocks to the technology for producing 

investment goods.
2
  In an open economy, terms-of-trade shocks affect the economy‘s ability to 

provide consumption and investment goods for final use, even if no domestic producer has had a 

change in technology. 

We then present a new and more robust method for estimating sector-specific technical 

change.  Existing methods for investigating the importance of sector-specific technology are 

based primarily on relative movements in the price deflators for investment and consumption 

goods, an approach pioneered in an important paper by Greenwood, Hercowitz and Krusell 

(1997; henceforth GHK).  Our evidence, in contrast, is based on an augmented growth-

accounting approach, where we estimate technology change at a disaggregated industry level and 

then use the input-output tables to aggregate these changes.   

Our approach offers several advantages.  First, we can relax and, indeed, test many of the 

assumptions necessary for relative-price movements to correctly measure relative changes in 

domestic technological change.  For example, suppose different producers have different factor 

shares or face different input prices; or suppose markups change over time.  Then relative prices 

do not properly measure relative technical change.
3
  Second, we discuss extensions to the open 

economy, where the ability to import and export means that relative investment prices need not 

measure relative technologies in terms of domestic production. 

We view our ability to allow for differences in sectoral factor shares as the most 

important advantage of our method.  All methods that use relative price changes to identify 

                                                 

2
 Greenwood, Hercowitz and Krusell (2000) provide an insightful approach to business-cycle modeling 

with sector-specific technical change.  However, they used a normalization for sector-specific technology that did 

not have a pure consumption-augmenting shock, and thus did not uncover this neutrality result. 
3
 We can also test the orthogonality restrictions used in the structural VAR approach of Fisher (2006), who 

also uses relative price data but with a long-run restriction. 
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technology shocks (with either short- or long-run restrictions) require that all final-use sectors 

have the same factor shares.  We are able to calculate these final-use shares using our method, 

and find that they differ significantly across sectors, which means that we should not estimate 

investment-specific technical change using relative prices. 

Applying our method to sectoral US data, we find that consumption-specific and 

investment-specific technology shocks have very different economic effects.  In particular, 

consumption-specific technology improvements are generally expansionary for all important 

business-cycle variables (although hours worked rise significantly only with a lag).  By contrast, 

investment-specific technology improvements are contractionary for all important business-cycle 

variables.  Importantly, both shocks induce positive comovement among the key business-cycle 

variables, including output, consumption, investment and hours. 

As we show in the next section, however, neither set of responses is consistent with RBC 

theory.  Clearly RBC theory would not predict a decline in GDP, consumption, hours and even 

investment following an investment technology improvement.  Perhaps more suprisingly, the 

fact that hours and investment rise after a positive consumption technology investment is also 

evidence against the RBC model.  However, Basu and Fernald (2010) show that these responses 

are generally consistent with the predictions of simple two-sector sticky-price models. 

In conjunction, the theory and empirical work in our paper suggests that we need to 

revisit several influential empirical literatures using multi-sector economic models.  For 

example, papers in the large literature on the macroeconomic effects of technology shocks 

typically examine the responses of macroeconomic variables to aggregate measures of technical 

change.
4
    But if consumption- and investment-specific shocks are expected to have different 
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economic effects, aggregating the two into a single measure can introduce significant 

measurement error in an explanatory variable.  (Interestingly, the strong dichotomy between the 

effects of the two types of shocks typically does not hold in models with sticky prices.  Thus, 

similarities or differences in the economy‘s response to consumption- and investment-specific 

shocks may also cast light on the importance of price stickiness in the macroeconomy.) 

To take another example, many papers follow the suggestion of Cochrane (1994) and 

take the consumption-output ratio to be a measure of permanent income relative to current 

income.  In a general-equilibrium model, the gap is usually due to (expected) changes in 

productivity.  Rotemberg and Woodford (1996) use this interpretation to fashion an empirical 

critique of RBC models by comparing the expected transitory changes in macroeconomic 

variables in the data to those predicted by a one-sector RBC model.  But the correlation between 

expected changes in consumption, output and other variables can be quite different depending on 

whether the shock affects consumption technology, investment technology, or both.  Thus, it 

may be necessary to revisit Rotemberg and Woodford‘s influential critique by comparing the 

data to the predictions of multi-sector RBC models. 

Our approach to the data also forces us to think about the role of the open economy in 

economic fluctuations.  That is, our approach requires that we take a stand on the ―technology‖ 

for producing net exports.  Thus, we need to decide whether to take a narrow or broad view of 

technology.  The narrow view is to say that ―technology‖ is just something that shifts a domestic 

production function.  We choose to take a broader view, and define technology from the 

consumption possibilities frontier: At least in a neoclassical model where there are stable 

preferences and no distortions, technology is anything that changes consumption for given levels 

of capital, investment and hours worked.  Technology thus defined therefore incorporates 

changes in the terms of trade.  It is clear, of course, that terms of trade changes do not shift 
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domestic production functions, and thus are not technology shocks in the narrow sense.
5
  But it is 

also true that domestic technology shocks are not the only sources of changes in consumption 

and welfare, even in a fully neoclassical model.  Understanding the behavior of consumption in 

both the short and long runs requires us to take an open-economy, multi-sector approach. 

.The paper is structured as follows.  After this introduction, we demonstrate that simple 

economic theory suggests that consumption- and investment-specific shocks should have very 

different economic effects, and thus it would be interesting to obtain separate measures of the 

two and study their empirical effects.  Next we present our method for obtaining disaggregated 

final-use shocks, with special attention to the role of the terms of trade.  We then discuss the 

data, present results, and draw conclusions. 

II. Consumption-Technology Neutrality 

The character of both growth and business cycles depends on the sectoral distribution of 

technical change. In the neoclassical growth model, capital accumulation arises only if technical 

change expands the possibilities for producing capital goods. Indeed, as shown by Kimball 

(1994), with balanced growth, technology change that affects the consumption-producing sector 

alone has no impact on employment or capital accumulation at all.  Hence, the nature of growth 

is tightly connected to the sectoral distribution of technical change.   

The response of a real business cycle model economy to an exogenous technology shock 

also depends on the sectors of the economy it affects. Hours and investment responses to a 

pervasive, sector-neutral, positive technology shock are well understood. They follow from the 

intertemporal substitution of current leisure and consumption for future consumption. The 

household is willing to do this because of the high returns to working and saving. These effects 
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 See Kehoe and Ruhl (2006). 
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are amplified when technical change affects the investment sector alone, because current 

consumption is even more expensive relative to future consumption in this case (e.g., Fisher, 

2005).  Consumption-sector shocks have smaller effects on intertemporal substitution and so 

have much less effect on decision rules. As Fisher (1994, 1997) and Kimball (1994) discuss, if 

preferences are logarithmic, then the decision rules for investment and hours, as well as the 

allocation of capital and labor across producing consumption and investment goods, are invariant 

to the stochastic process of consumption-specific technology. More generally, for preferences 

that are consistent with balanced growth, hours and investment and factor allocations do not 

respond to a technology shock, if that shock is permanent, unanticipated, and affects only the 

consumption sector. So the nature of business cycles is also tied to the sectoral distribution of 

technical change. 

We now present a simple model to illustrate these points.  We then discuss other recent 

macroeconomic work that has focused on the final-goods sector in which technical change 

occurs.  The empirical evidence has been drawn almost exclusively from aggregate data, with 

heavy reliance on relative prices. 

Consider the two-sector closed-economy neoclassical growth model.  Suppose one sector 

produces consumption goods C, the other sector produces investment goods, J (We use J to 

differentiate investment from the identity matrix, which we use extensively later).  Both sectors 

produce output by combining capital K and labor L with the same function F but separate Hicks-

neutral technology parameters, ZC  and ZJ.  

In particular, consider the social planner‘s problem for the following problem, where 

utility is logarithmic: 



 7 

 

0
, , ,

0

1

max [ln( ) ( )]

. . ( , )

( , )

,

(1 )

t

t t
N C X I

t

C C C

J J J

C J C J

t t t

E C v L

s t C Z F K L

J Z F K L

K K K L L L

K J K













 

 

   

  



 (1) 

We omit (most) time subscripts for simplicity.  This setup appears in the recent literature 

in various places.  For example, this is a two-sector version of the model in Greenwood, 

Hercowitz, and Krusell (GHK, 1997); Whelan (2000) discusses the mapping to GHK in greater 

detail.  There are various ways to normalize the technology shocks.  For example, GHK define ZJ 

= ZCq, where q = ZJ/ZC,.   GHK label ZC as ―neutral‖ technology and q as ―investment specific,‖ a 

labeling that has been widely followed since.  A shock that raises ZC but leaves q unchanged is 

neutral in that both ZC  and ZJ increase equally.   

For the purposes of discussing consumption-technology neutrality, a different 

normalization is more natural.  In particular, suppose we define A = ZC/ZJ  as ―consumption-

specific‖ technology.  Then the problem in  (1) can be expressed as a special case of the 

following problem, where we have expressed the problem with a single aggregate budget 

constraint: 
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 X is an index of inputs devoted to consumption (in the previous example, it would 

correspond to the production function ZJ F(KC, LC).  Since X=C/A, and A  corresponds (in the 

decentralized equilibrium) to the relative price of investment to consumption, we can interpret X 

as consumption in investment-goods units (i.e., nominal consumption deflated by the investment 
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deflator).  This is essentially the same approach taken by GHK, except that given their 

normalization, they express everything (investment and output, in particular) in consumption 

units.   But given logarithmic utility, we can express this problem as:  
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Consumption-technology neutrality follows directly from this expression of the problem.  

In particular, because ln(A) is an additively separable term, any stochastic process for A has no 

effect on the optimal decision rules for L, X, or J.  They do not induce capital-deepening or any 

of the ―expected‖ RBC effects; e.g., employment doesn‘t change.  Consumption jumps up, which 

immediately moves the economy to its new steady state.
6
  They affect only real consumption and 

the relative price of consumption goods.  In contrast, investment-sector technology shocks would 

have much more interesting dynamics.  They induce long-run capital-deepening, and even in the 

short-run affect labor supply and investment dynamics. 

Thus, consumption-sector technology shocks are ―neutral.‖ .This consumption-

technology neutrality proposition has been implicit in two-sector formulations for a long time; 

the first explicit references we are aware of are Kimball (1994) and Fisher (1994).  Nevertheless, 

it appears to be a little-known result.  One reason is that the seminal work by Greenwood, 

Hercowitz, and Krusell (1997) used a different normalization, as noted above; they focused on 

the response of the economy to ―investment specific‖ shocks.  A shock to consumption 
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 Kimball (1994) discusses this case further, as well as the extension to King-Plosser-Rebelo (1988) 

preferences. 
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technology alone (leaving investment technology unchanged) would then involve a positive 

neutral shock, combined with a negative investment-specific shock.
7
   

The theoretical motivation for studying sectoral technical change is bolstered by a 

nascent empirical literature. Most of this literature has followed the GHK normalization of 

―neutral‖ and ―investment specific‖ shocks.  GHK used data on real equipment prices and argued 

that investment-specific, not sector-neutral, technical change, is the primary source of economic 

growth, accounting for as much as 60% of per capita income growth. Cummins and Violante 

(2000) also find that investment-specific technical change is a major part of growth using more 

recent data.  Several papers also highlight the potential role sector-specific technology shocks in 

the business cycle.  Greenwood, Hercowitz and Huffman (1988) were the first to consider 

investment-specific shocks in a real business cycle model. Other papers studying investment-

specific shocks within the context of fully-specified models are Campbell (1998), Christiano and 

Fisher (1998), Fisher (1997), and Greenwood, Hercowitz and Krusell (2000). These authors 

attribute 30-70% of business cycle variation to permanent investment-specific shocks. In the  

structural VAR literature, Fisher (2006), extending the framework used by Gali (1999) to the 

case of investment-specific shocks, finds that investment-specific shocks explain 40-60% of the 

short-run variation in hours and output.
8
  

This prior work is based on a ―top-down‖ measurement strategy that relies on investment 

and consumption deflators (either directly from the BEA, or augmented with equipment deflators 

from Gordon (1990), and Cummins-Violante (2002). Our paper contributes to the literature by 

                                                 

7
 Equivalently, a positive shock to investment-specific technology (with neutral technology unchanged) or 

a positive shock to neutral technology (leaving investment-specific technology unchanged) would both raise 

investment-technology in the two-sector formulation, and hence would lead to dynamic responses in the frictionless 

model. 
8
 Fisher‘s impulse response functions look similar to the subperiod results in Gali, Lopez-Salido, and Valles 

(2002), with technology shocks reducing hours worked in the pre-1979 period and raising them thereafter. 



 10 

providing new measures of sector-specific technical change that, in principle, are more robust. 

These new measures of technical change can be used to assess the veracity of the existing 

literature‘s findings.  The next few sections discuss some of the challenges involved in linking 

this framework to the disaggregated data.  We begin with a conceptual issue of how to treat 

terms-of-trade effects.  We then discuss how we use the input-output tables to create the link 

between disaggregated productivity and aggregate final-use sectors. 

III. Terms of Trade Effects 

For an open economy, relative prices capture not just relative technologies, but also 

terms-of-trade effects.  More generally, terms-of-trade shocks affect the ability of an economy to 

produce consumption and investment goods, since one can export and import these kinds of 

goods.  As a simple example, suppose we import consumption goods and export investment 

goods.  Then a terms of trade improvement, other things equal, allows us to obtain more 

consumption goods while producing (and using domestically) the same quantity of investment 

goods, and with no change in input use.  One might, as a more realistic example, consider that if 

we get a better price for exporting financial services, we can import more (i) machine tools; (ii) 

consumption goods; and (iii) oil (which, once refined into petroleum products, is an intermediate 

input into everything).  

These examples point out an ambiguity in the meaning of ―technology‖ in the context of 

final expenditure.  In an open economy, terms-of-trade shocks affect the economy‘s ability to 

supply consumption and investment goods, even if no production function changes.   

The situation is somewhat analogous to a firm that produces a particular product using 

capital, labor, and intermediates.  The firm‘s ability to convert a given quantity of inputs into that 

product is not affected by relative prices.  But the firm‘s ability to obtain the output of another 

firm does depend on relative prices.  Similarly, an economy‘s ability to produce final output 
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depends on its ability to trade with the rest of the world (other producers) and on what terms.  In 

our measurement, we will incorporate these terms-of-trade effects into our estimation of sectoral 

technologies.   

In a productivity context, it is controversial to label terms of trade changes ―technology 

shocks,‖ since they do not shift any production function for domestic output.  On the other hand, 

from the standpoint of thinking about the economy-wide budget constraint, trade clearly matters.  

Trade is, in effect, just a special (linear) technology:  terms of trade changes allow consumers to 

have more consumption with unchanged labor input or investment.  It is particularly useful to 

interpret terms-of-trade changes as ―technology‖ in the context of sector-specific technical 

change, because the composition of imports and exports is quite different.   

Nevertheless, it is important to keep in mind that this form of technology is a special one.  

For example, rather than having unbounded trend growth, we expect the trade ―technology‖ to be 

stationary (at least if purchasing power parity holds in the long run).  

Once again, the information in the input-output matrix allows us to keep track of trade 

flows, and discern the impacts of changes in the terms of trade on different categories of final 

expenditures. 

IV. Sectoral Technical Change from the Bottom Up 

A. Preliminaries 

The input-output tables allow us to track flows of goods and services, in order to map 

disaggregated productivity data into aggregated final-use sectors.  The tables tell us the uses of 

each identified commodity, where ―commodity‖ means a category of goods or services.  These 

uses include final uses (consumption, investment, government purchases, and net exports) and 
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intermediate uses (e.g., steel sold as an input into the auto production).  Several issues arise in 

using the input-output and productivity data.
9
  

First, the standard use table shows the flows of commodities to final uses as well as to 

intermediate uses in industry (not commodity) production.  But because of our interest in the 

sector of final use, we are inherently interested in the production of commodities, not production 

by industries. Some industries produce multiple commodities.  In our two-digit data, the largest 

deviation between industries and commodities is in printing and publishing:  About 62 percent of 

the production of the printing and publishing industry (in 1977) is the commodity labeled 

printing and publishing; most of the rest is services (the detailed BEA accounts reported in 

Lawson et al (2002) indicate that this is advertising services). In this example, the same 

establishment will often produce both commodities.  Hence, as a data issue, the input-output 

accounts record inputs according to the primary product of the establishment.  But the so-called 

―make‖ table shows what commodities each industry produces, which allows us to, in effect, 

produce a commodity-by-commodity use table.  (The appendix discusses our specific 

manipulations.  Nevertheless, with a few exceptions, the make table is close enough to diagonal 

that these manipulations do not make much difference.) 

Second, productivity data (such as that obtained from the KLEM dataset of Jorgenson 

and his collaborators) is also in terms of industries; but final-use sales are in terms of 

commodities.  So we need to convert industry productivity data into commodity productivity 

data.  Again, the make table allows us to do that conversion.  Suppose we have a column vector 

of industry productivity growth rates, dz
I
.  Conceptually, we interpret this vector of industry 

productivities as a ―garbled‖ version of the column vector of commodity productivity growth 

                                                 

9
 Appendix A discusses the link between the simple dynamic theory presented earlier—with production 

functions for consumption and investment, and no intermediate inputs—and the complicated, rich, and interrelated 

data that we manipulate empirically.  Later versions of this paper will make these links more explicit. 
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rates, dz, that we are interested in, so that a weighted average of commodity technology growth 

equals industry technology growth, where the make table tells us the output-share weights . In 

particular, suppose we convert the make table M to row-share form, so that element mij 

corresponds to the share of output of industry i that consists of commodity j.  Then I

t tM dz dz .  

Thus, given the industry productivity-growth vector and the make table, the implied commodity 

productivity growth vector is 1 I

t tdz M dz . 

Third, the standard use table is in terms of domestically produced commodities and 

domestic industry production.  But we can also import commodities to satisfy either intermediate 

or final demands; so given a focus on commodity uses, we want a use table that is in terms of 

total commodity supply and total commodity production.  (For example, through imports, we 

could consume more than the total value of domestically produced consumption.)  Total supply 

is, of course, either domestically produced or imported.  The import information is already in the 

standard use table so, again, we must simply rearrange the information in the table. 

We assume that have already incorporated the information from the make table to create 

a use table that is entirely in terms of commodities.  For simplicity of presentation, we assume 

there are only two commodities in the economy and we ignore government purchases.  The 

extension to more commodities and more final-use categories will be obvious.
10

 

In simplified form, the use table (in nominal terms) represents the production and uses of 

domestically produced goods, and looks like (4) below.  Rows represent uses of domestic 

                                                 

10
 For the purposes of discussion, we also ignore so-called non-competing imports.  When we apply our 

framework, we aggregate non-competing imports with commodity imports as ―trade‖ inputs into the production of 

domestic supply; and we consider non-competing consumption, investment, and government goods as the direct 

contribution of ―trade‖ to these final uses.  Our discussion also ignores indirect business taxes, which would be an 

additional row of ―value added‖ necessary for row and column shares to be equal.  On the production side, we will 

need factor shares in producer‘s costs, which do not include these taxes. 
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production; columns (for commodities 1 and 2) represent inputs into domestic production.  Row 

and column totals for the two commodities represent domestic production of the good.  

 

1 2

2

1 2

1 1 1 1 1 1 1 1 1 1 1 1

1 2

2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 2 2

1 1 2 2

1 1 2 2

Row
1 2

Total

1

2

Column total

C J D X M M D D

C J D X M M D D

K K K

L L L

D D D D

C J X M

C J X M

PY PY P Y P Y P Y P Y P Y

PY PY P Y P Y P Y P Y P Y

K P K P K P K

L P L P L P L

P Y P Y P C P J P X P M







 (4) 

Note that the domestic commodity price is D

iP .  The imported commodity price is M

iP .   

The overall supply price of the commodity (a Divisia index of the domestic and imported prices) 

is simply Pi.  In principle, the supply price of a commodity might differ for use as an 

intermediate input, consumption, or investment, since the mix of imported and domestic supply 

might differ.  In practice, the data do not allow us to differentiate between uses of domestically 

produced versus imported commodities; so we assume all users face the same composite price.  

We assume that commodity exports are from domestic producers, with price D

iP .  Reading down 

a commodity column (1 or 2 in the example above) gives payments to each factor input.  

Implicitly, any pure profits are attributed to one or more of the factors; most obviously, they have 

been attributed to capital, whose factor payment is measured as a residual to ensure that the value 

of output equals the value of inputs.   (Note that we have omitted time subscripts for simplicity.) 

Total supply of a commodity is the aggregation of domestic production and imports.  In 

nominal terms, the total supply of the commodity (column sums and row sums for commodities 

1 and 2) is D D M M

i i i i i iP Y P Y P Y  .   

The purpose of exports, of course, is to obtain imports.  We can think of the import-

export sector (what we‘ll call the ―trade‖ sector—not to be confused with wholesale and retail 

trade) as a commodity.  Consider the following rearrangement of the information in the use table: 
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1 1 1

2 2

1 2

1 1 1 1 1 1 1 1 1

1 2

2 2 2 2 2 2 2 2 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

Row
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Total
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D X C J
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X
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P Y P Y P X

P M
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P M





 (5)   

Note that the ―final use‖ columns for consumption and investment don‘t change.  For 

trade goods, the technology is that we export goods in exchange for imports.  We also use the 

―trade goods‖ to obtain pieces of paper that represent claims on the future: net exports.  So the 

final-expenditure category for trade goods is net exports; those are conceptually a form of 

investment.  So the inputs into producing trade goods (shown in the ―trade goods‖ column) are 

exports of commodities 1 and 2.  The trade-goods row shows the uses of trade-goods output: we 

obtain imports of commodities 1 and 2 (which augment domestic production and increase 

commodity supply) as well as net exports.  These commodity imports are then an input into 

producing a supply of the commodity, as well as being part of the output of the commodity.  

(This is comparable to the fact that some of the output of commodity 1 is used as an input into 

commodity 1; so that part of the input-output table already represents commodities that are both 

inputs and output of the commodity.)
11

 

Corresponding to this nominal use table is a real use table.  In most cases, the relevant 

deflator is obvious; and where we aggregate goods (e.g., nominal consumption expenditure), we 

use Tornquist aggregates that weight growth rates by nominal shares.  The one exception to the 

                                                 

11
 We combine these imports with non-competing imports that are inputs into commodity production in the 

standard tables, with a row that corresponds to the commodity ―non-competing imports.‖  We will thus think about 

there being q commodities in total, in either the standard or our rearranged tables. 
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―obvious‖ nature of the deflators is the deflator for overall trade-goods output.  Nominal trade 

goods output equals the value of exports; that‘s the nominal value of the goods we supply to the 

rest of the world.  The real output, though, is the real quantity of imports that we can get from 

those exports, so we deflate the nominal exports with the deflator for imports.  Hence, growth in 

real trade goods equals growth in real exports plus the growth in the terms of trade.  This is true 

for the final-use net-exports column, as well.   

We can calculate technology change for each commodity, either using standard growth 

accounting to obtain a Solow residual or else using augmented growth accounting (as in Basu, 

Fernald, and Kimball, 2006) to obtain a ―cleansed‖ residual.  In any case, we essentially take 

growth in the real index of commodity supply and subtract growth in real inputs, possibly 

multiplied by an estimate of returns to scale, and possibly with a correction for utilization.  Note 

that commodity imports are an intermediate input into the production of commodity supply, as 

well as being part of the commodity output.  (For Divisia indices, which the Tornquist 

approximates in discrete time, this simply leads to a rescaling of commodity TFP by the ratio of 

domestic production to total supply, much in the way that standard gross-output TFP is a scaled-

down version of value-added TFP.)   

For the trade sector, we assume the technology has constant returns to scale.  Growth in 

real trade goods equals growth in exports plus the growth in the terms of trade; and growth in 

real trade inputs equals growth in exports.  Hence, trade-commodity technology growth dzTrade 

(dz3 in the numbering above) is growth in the terms of trade, ( )X Mdp dp . 

Notationally, it will prove useful to transpose the use table and then take row shares.  

This yields the following: 
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   
       

 (6) 

Reading across a row, the shares sum to one.  For the net exports row, we simply define 

the ―trade goods‖ share to be 1, to avoid dividing by zero in the case where net exports are zero. 

The lines in the vectors on the right show whether we define them as row or column vectors.   

B. Aggregation 

The examples above used three final-use sectors (C, J, and NX).  In our data, we will 

extend this to consumption of nondurables and services (C), consumer durables (CD), equipment 

and software investment (JE), structures (JS), government purchases (G), and net exports (NX).  

For final-use sector f , we define sectoral technology change as:   

 1( )f fdz b I B dz   (7) 

Why does this provide a reasonable approach to aggregation?    In aggregating up from 

commodity-level technology growth, it is desirable to have a relatively mechanical aggregation 

procedure that is not too sensitive to the details of a particular model. The analogy is Domar 

weighting.  However, Domar weighting, because it aims at a comprehensive aggregate, does not 

need to explicitly address the issue of what a commodity is used for.  By contrast, in order to get 

an aggregate consumption technology measure or an aggregate investment technology measure, 

one cannot avoid the issue of what a commodity is used for.  Here, to avoid strong model 
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sensitivity, we take as our standard the usage shares in which a given commodity is distributed in 

the steady-state—or in practice, the trend values of the usage shares.   

This strategy of ―constant-share aggregation‖ is convenient, because it implies that when 

the quantity produced of a commodity increases by 1 percent, the amount of the commodity in 

each use increases by 1 percent.  This leads to quite tractable aggregation formulas.  In 

particular, suppose there are q commodities (including the virtual ―trade good‖).  Let ГCM be a 

qxq matrix where the rows give the elasticities of the output of a particular commodity with 

respect to each of the commodities as an intermediate input. Think of Г as a qxq diagonal matrix 

of returns to scale parameters; and think of CM as a matrix with each row giving the cost shares 

of the various commodities used as intermediate inputs into producing a given commodity. 

Under the assumption of zero profits (which we will make in what follows), CM =B.  But what 

follows depends only on ГCM being the matrix of elasticities of the output of one commodity 

with respect to each of the commodities as an input.   

Now suppose there are innovations dz to the vector of commodity technologies.    First, 

the vector dz gives the direct effect of commodity-level innovations on the q different 

commodity outputs. Second, under constant-share aggregation, the extra output of each 

commodity increases its use proportionately as an intermediate input into other commodities; this 

second-round effect is 
MC dz .  Third, again under constant-share aggregation, these second 

round effects on the quantity of each commodity yields a third-round effect of 2( )MC dz  . In the 

end, as the technological improvements in the production of each commodity repeatedly work 

their way through the input-output matrix,there is an ―input-output‖ multiplier of  

 2 3 1[ ( ) ( ) ...] [ ]M M M MI C C C dz I C dz         (8) 
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In practice, we impose zero profits, which means that elasticities are proportional to the 

observed share matrix B.  For the purposes of aggregation, we also set Г equal to the identity 

matrix, at least at an initial step.  When we use standard TFP—where constant returns is a 

necessary condition for it to measure technology—setting Г =I is quite natural.  When we use 

Basu, Fernald, and Kimball (2004) residuals as a measure of technology, we could use their 

estimated Г matrix.  A concern there is that measurement error in estimating Г is then inverted, 

so that positive and negative measurement error in Г are not symmetric (in the way that positive 

and negative measurement error in the dz  vector, for example, is symmetric and in the limit 

cancels out).  We plan to revisit this estimation and aggregation issue in later drafts.
12

  

Finally, multiplying by the row vector of final-use shares (e.g., 1( )C Cdz b I B dz  ) arises 

from the obvious aggregation of the bundles of commodities used to make the final-goods 

consumption basket and the final-goods investment basket.    

C. Relating relative TFP to relative final-demand prices 

For the closed economy case where there are no intermediate inputs (i.e., one 

representative producer uses capital and labor to produce consumption goods; another produces 

investment goods), our definitions match the two-sector growth model.   

In practice, a large literature measures investment-specific technical change by the 

change in the relative price of consumption to investment.  To highlight the conditions necessary 

for this relative-price/relative-technology relationship to hold, we now consider how our 

definition of relative TFP corresponds to relative output prices.  (Standard TFP, of course, 

                                                 

12
 Note that column j of [I-B]

-1
 gives the direct and indirect effects of a shock to commodity j on the full 

vector of commodities.  Row j, in turn, gives the effect on a given commodity j of the full vector of shocks.  For 

intuition on what [I-B]
-1 

looks like, recognize that I+B gives much of the weight, where the direct effect of shocks 

reflects the identity matrix, and the first indirect effect is given by the B matrix which, in turn, gives output 

elasticities under the assumption of constant returns and perfect competition. 



 20 

represents technology only under relative strict conditions; we return to this issue below.)    In 

particular, we can write standard industry/commodity TFP in its dual form as growth in share-

weighted real factor prices, or
13

 

 
i Ki Ki Li Li Ni Ni idz s dp s dp s dp dp    . (9) 

dpJi is growth in the input price for factor J in producing commodity I; sJi is its factor 

share, and dpi is the growth in commodity price i (importantly, from the producer‘s point of 

view).  For the international trade commodity, TFP growth is the terms of trade.  In the dual 

formulation, international trade has capital and labor shares equal to zero (so the first term in 

brackets is zero).  We export in order to import.  Hence, the intermediate input share in 

production is unity and the intermediate input price is the export price; the output price is the 

import price. With all prices and shares in column-vector form, equations (4) and (9) imply that 

we can write relative TFP growth as:  

 
1

1 1

( )( )

( )( ) [ ] ( )( ) [ ]

J C J C

J C K K L L J C N N

dz dz b b I B dz

b b I B s dp s dp b b I B s dp dp



 

   

       
 (10) 

Consider the final term in brackets.  The intermediate-input share for producing 

commodities, 
Ns , is the row sum of the B matrix.  And the intermediate input prices for 

producing commodities is the Tornquist index of all the purchaser prices, using the intermediate-

input share matrix B.  Indeed, suppose that there were no sales taxes or distribution margins (so 

purchaser and producer prices were equal), and that the foreign supply of each commodity had 

                                                 

13
 The equality of the dual and primal representations comes from differentiating the accounting identity 

that the value of output equals the value of input: L K NPY P L P K P N   ; for the identity to hold, any pure 

profits are included in the price of capital input.  Putting quantity growth terms on the left-hand side and price 

growth terms on the right hand side L K N L L K K N Ndy s dl s dk s dn s dp s dp s dp dp        , where dj 

represents growth in the variable j, and sJ is the factor share for input J.  In discrete time, this is not quite an identity, 

but the standard deviation of the approximation error is typically on the order of thousandths of a percentage point.     
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the same price as the overall import price deflator (the final element of the vector dp).  Then it 

would exactly be the case that 
N Ns dp Bdp .  In this special case, we would have: 

 
1

1

( )( ) [ ( ) ]

( )( ) [ ] ( )

J C J C K K L L

J C K K L L C J

dz dz b b I B s dp s dp I B dp

b b I B s dp s dp b b dp





      

     
. (11) 

The first term on the right-hand-side is the difference in growth in share-weighted 

primary-input prices for capital and labor (after they have been passed through the I-O matrix [I-

B]
-1

); the second term is the difference in the growth of the relative price of consumption to 

investment (using the Divisia price index, which is a very close approximation to the national 

accounts definition).  Suppose all sectors face the same input prices, have the same shares of 

capital and labor in revenue, and have a similar input-output structure (in particular, suppose the 

row-sums of [I-B]
-1

 are all equal).
14

  Then the first relative-factor-price term is zero—the 

consumption and investment sectors implicitly face the same share-weighted prices for capital 

and labor.  In that case—which most macro models implicitly or explicitly assume—relative 

sectoral TFP shows up one-for-one in relative final-goods prices.  This relative-price and 

relative-TFP decomposition suggests that our definition is a natural extension of the GHK case. 

In practice, however, there is no reason to expect share-weighted factor prices to be equal 

for the consumption and investment sectors.  First, equality of factor shares across producers 

clearly doesn‘t hold (see, for example, Herrendorf and Valentinyi, 2007).  Second, factor prices 

movements are likely to differ across firms.  For example, with adjustment costs/quasi-fixity, 

neither the ex ante nor the ex post return to capital need not be equated across firms. Moreover,  

                                                 

14
 Recall that row j of (I-B)

-1
 gives the effect on commodity j of the vector of shocks hitting the economy, 

working through the input-outpu tables.  For intuition, consider again that (I-B)
-1

 =I+B+B
2
 +….  A shock to share-

weighted input prices in commodity k has an first-round indirect effect on the marginal cost of commodity j of bk,j.  

As the shock works its way through the I-O tables, there are further indirect effects given by B
2
 and so on.  

Mechanically, suppose that factor shares and factor prices are equated, so that the vector of share-weighted input 

prices are equal.  If the row-sums of (I-B)
-1

 are also equal, then the consumption and investment share-weighted 

factor prices are also equal and cancel out—the direct and indirect effects of shocks to primary share-weighted 

factor prices hits all producers equally. 
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indices for capital and labor input involve aggregating across different types of capital—and the 

mix of, say, high tech equipment (where prices have been falling rapidly) versus structures 

(where relative prices have been rising) differs across producers.  Thus, even if the input price 

for an identical machine or an identical worker were equated across producers, the indices of 

capital or labor input prices could well differ. 

More generally, there are two additional channels for changes in relative prices to diverge 

from relative TFP changes.  First, the relevant intermediate-input price for the ―use‖ of 

international trade is the foreign supply price for that commodity,
 15

 not the overall import price.  

If, for example, the price of imported investment goods falls relative to price of imported 

consumption goods then the consumption price will rise relative to the investment price.  Second, 

the derivation above assumed that there are no changes in the wedges between the prices paid by 

purchasers versus the prices received by producer.  Sales taxes and distribution margins can 

drive a wedge between these two.  If, say, sales taxes rise on consumer goods relative to 

investment goods, then the consumption price will rise relative to the investment price. For the 

general case, the appendix derives the following identity: 

 

1

1 Trade-column Commod-import-price 1 D,Purch D,Prod

( ) ( )( ) [ ]

( )( ) ( )( ) ( )

Relative price + Input prices + Import-prices + sales-tax wedg

C C

J C C J J C K K L L

M D

J C J C

dz dz b b dp b b I B s dp s dp

b b I B b dp dp b b I B dp dp



 

      

       

 e

(12) 

The final two terms capture the effects of relative import prices for investment and 

consumption goods; and the wedge between purchaser and producer prices. 

So far, the decomposition has been a purely accounting one, and does not take a stand on 

whether standard TFP growth is a good measure of technology change.  A substantial body of 

                                                 

15
 More accurately, we need to aggregate the prices for foreign supply of the commodity with non-

competing imports used in domestic production of the commodity.  
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literature argues that, certainly in the short run, it is not.  As is well known, to equate firm-level 

TFP growth with technology change, one generally needs to assume constant returns, perfect 

competition, and full observation of all inputs (including factor utilization).  Basu, Fernald, and 

Kimball (2006) find that none of these conditions apply empirically, and suggest a method to 

control for the non-technological factors that affect measured TFP, such as variations in capital‘s 

workweek and labor effort.  But in general, markups and variations in markups drive a further 

wedge between technology and relative prices. 

D. An example 

For further intuition, consider the 2x2 case where there is only one non-trade commodity.  

Commodity 2 is the trade-commodity.  Then b21 equals 1 (only commodity 1 is exported) and b22 

equals zero (the trade good is not an input into itself).  In this case, (I-B)
-1

 is  

 

1 1

1211 12 11 12

1111 12

11 1

1 11 0 1 1 (1

bb b b b
I

bb b

 
         
          

         
 (13) 

The consumption-sector (and, for that matter, investment sector) technology shocks are: 
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     

       

   

 (14) 

dz1 is technology growth in the non-trade commodity; dz2 is the change in the terms of 

trade ( )X Mdp dp .  Hence, the technology for producing consumption goods in the economy can 

improve if the economy becomes better at producing the commodity; or if the terms-of-trade 

improve.  The terms-of-trade improvement means that by exporting an unchanged quantity of the 

commodity, the country can increase its consumption because it can import more.  In the 

denominator, the b12 term represents imports of commodity 1; they are an ―input‖ into supplying 
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the commodity, and we have already counted them as part of the supply of the commodity.  

Together, the (1-b11-b12) term represents the standard Domar weight from intermediate goods (in 

this case, of the commodity itself).  

The ―trade technology‖ is: 

  

1

12 1

11 2 11 12

1 11 2 11 12

( )

1 1
0 1

1 1 1

( (1 ) ) (1 )

NX NXdz b I B dz

b dz
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 

    
     

       

    

 (15) 

If either sector becomes more productive, then trade technology improves.  By getting 

better at producing commodity 1, you become better at producing intermediate inputs (in this 

case, exports) that are used to ―produce‖ imports.  If the terms of trade improve, then a given 

quantity of exports now produces more imports.  

V. Data 

We use the KLEM dataset produced by Dale Jorgenson and his collaborators, along with 

the underlying input-output data.
16

 These data, which run 1960-2005, provide consistent industry 

productivity (output and inputs) as well as commodity final-use data for 35 

industries/commodities.  (Annual make tables are available beginning in 1977.)  We are not 

aware of any other disaggregated U.S. data set that covers the entire economy and allows 

productivity analysis for a long time period. 
17

)   

                                                 

16
 The dataset updates Jorgenson, Gollop, and Fraumeni (1987).  We thank  Dale Jorgenson as well as 

Barbara Fraumeni, Mun Ho, and Kevin Stiroh for helpful conversations about the data.  Jon Samuels helped 

tremendously with data availability.   The main data are available at http://dvn.iq.harvard.edu/dvn/dv/jorgenson 

(accessed April 26, 2010).  
17

 The original data source for input-output and industry gross output data is generally the Bureau of Labor 

Statistics which has, for a long time, produced annual versions of both nominal and real (chained) I-O tables.  (The 

current vintage of data from the BLS Empoyment Projections Program is available at http://www.bls.gov/emp/#data 

(accessed April 26, 2010). 

http://dvn.iq.harvard.edu/dvn/dv/jorgenson
http://www.bls.gov/emp/#data
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The Jorgenson data offer several key advantages.  First, they provide a unified dataset 

that allows for productivity analysis by providing annual data on gross output and inputs of 

capital, labor, and intermediates.  Second, the input data incorporate adjustments for 

composition; e.g., services from different types of labor are taken to be proportional to wages, as 

standard first-order-conditions imply, not simply to total hours worked.  Third, the productivity 

data are unified with annual input-output data that are measured on a consistent basis.  The I-O 

data include not just intermediate-input flows of the different commodities, but also commodity-

specific final expenditures on consumer non-durables and services, consumer durables, 

investment, government, and exports and imports. 

We decompose [Explain how we decompose investment into equipment/software and 

structures; and how, later, we will decompose government into C, equip, and structures.] 

Our data do not comprise all of GDP.  First, they exclude the service flow from owner-

occupied housing.  Second, they exclude services produced directly as part of government 

administration (they do include government enterprises; and they include direct purchases by the 

government of goods and services produced by non-government businesses).  Thus, our output 

measure corresponds to the output of businesses plus nonprofit institutions serving households.   

We have separate prices for domestic commodity production and for commodity imports.  

For each commodity, we calculate a composite supply price as a Tornquist index, which we 

apply to  all uses of the commodity.  In essence, we assume that all users of a commodity 

consume the same composite of domestic and imported supplies of the commodity.
18

 

                                                 

18
 Relatively recently, the BEA has begun producing an ―import matrix‖ that shows, for each commodity, 

the estimated industry uses of imports.  But they create this table using the ―assumption that each industry uses 

imports of a commodity in the same proportion as imports-to-domestic supply of the same commodity,‖,( 

http://www.bea.gov/industry/xls/1997import_matrix.xls, ‗readme‘ tab) rather than using separate data on where 

imports flow.  So the BEA makes the same assumption we do. 

http://www.bea.gov/industry/xls/1997import_matrix.xls
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Much of the macroeconomics literature on investment-specific technical change has used 

alternative quality-adjusted deflators for investment goods, following Gordon (1983) and its 

extension by Cummins and Violante (2002).  We have incorporated these deflators in our work.  

First, since the Cummins-Violante measures end in 2000, we updated their empirical estimates, 

allowing us to obtain adjusted deflators for detailed equipment investment categories through 

2005.  Second, we re-estimate the capital-input measures for each industry in the Jorgenson data.  

To do so, we use the alternative Gordon-Cummins-Violante (GCV) deflators to obtain modified 

measures of real equipment investment from the BEA‘s detailed investment-by-industry dataset. 

For each type of capital asset, we then estimate perpetual inventory measures of the detailed 

asset-by-industry capital stocks; we then do Tornquist aggregation to industry capital-input 

measures using estimated user-cost weights.  Third, since these investment goods are produced 

by someone, we also need to modify commodity and industry output measures to account for 

their production.  For example, if the extended Gordon deflators suggest an adjustment to, say, 

special industrial machinery, we modify the deflators for the Jorgenson commodity/industry 

―non-electrical equipment‖ to take account of this modification.  The necessary modifications are 

fairly complex, and involve digging into the more detailed BLS input-output tables that underlie 

the Jorgenson data (e.g., to obtain appropriate weights for, say, special industrial machinery in 

total non-electrical equipment); details are available from the authors.  In general, these 

modifications affect the means of the data (for example, equipment technology growth is faster, 

but consumption technology growth (equipment users) is slower), but regression coefficients 

discussed below are not much affected.  

Table 1 shows the shares of the 35 commodities/industries, plus the 36
th

 ―international 

trade‖ commodity, in each final-use sector.  The columns shows the final-use commodity 
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shares—e.g., the vectors Cib   or JEb  , where the elements sum to 100 percent—and the shares 

after passing them through the input-output tables, e.g., the vector  1[ ]Cib I B  
 .  

Note that after incorporating the I-O flows, the column shares sum to much more than 

100 percent.  Intuitively, suppose a producer increases gross-output by 1 percent.  The firm could 

sell 1 percent more to, say, consumers, boosting consumption; but it can also boost sales as an 

intermediate input into other uses, which further boosts overall consumption beyond its initial 

effect.  In the case of international trade, the key second-round ―sales‖ are exports, which are the 

intermediate input into producing the international-trade commodity.   

Note that, in some cases, such as construction, the direct investment effect is similar to 

the overall effect; in other cases, the overall effect is much larger than the direct effect.  In 

general, sectors that sell primarily to final uses (such as construction) become relatively less 

important once passed through the I-O structure.  This is because there is little ―second round‖ 

(and further) effect on the production of investment goods, coming from the use of construction 

goods, say, as an intermediate input.  In contrast, sectors that produce a lot of intermediates (such 

as chemicals, finance, or services) become relatively more important when these second-round 

effects are taken into account. 

From our disaggregated data, we obtain measures of industry/commodity technology to 

feed through the input-output tables.  One easy measure would be the sectoral Solow residuals, 

i.e., 
i idy dx , where 

idx is share-weighted inputs of capital, labor, and intermediates.  However, a 

sizeable literature emphasizes that, in the short run particularly, measures of the Solow residual 

even at a disaggregated level contain non-technological components such as unobserved 

variations in factor utilization and the effects of  non-constant returns to scale.   
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Hence, we update the estimated industry technology residuals from Basu, Fernald, and 

Kimball (BFK, 2006).  In particular, we estimate the following regressions at the level of each 

industry, using oil price increases, government defense spending, and a measure of monetary 

innovations (from a VAR) as instruments:   

i i i i i idy c dx dh      , 

where dy is output growth, dx is share-weighted input growth, and dh is hours-per-worker growth 

(as a proxy for utilization).  These estimates control for variations in factor utilization and 

deviations from constant returns to scale, both of which can drive a wedge between technology 

and measured TFP.  For each industry, technology is measured as 
i ic  .  See BFK (2006) or 

Appendix D of this paper for further details.
19

  

BFK (2006) implement their adjustments for non-mining private industries.  For other 

industries, including mining, government enterprises, and the international trade industry, we 

simply use standard TFP.  This implies that the technology measures may not be fully 

exogenous.  Where this matters for regression analysis, however, there is a natural instrument: 

The measures of final-use technology, where we zero out the endogenous elements.  Of greatest 

importance there, we zero out the terms of trade (our measure of technology for the artificial 

international trade industry), which is clearly endogenous.  

VI. Results 

We now consider various issues of relevance for macroeconomists.  Except where 

indicated, our measures of relative prices, TFP growth (with industry Solow residuals), and 

technology change (with industry BFK residuals) are based on the Jorgenson data adjusted with 

Gordon-Cummins-Violante deflators. 

                                                 

19
 These residuals correspond to domestic industry production.  We convert them to commodity-supply 

residuals with the input-output make tables and by rescaling by the domestic supply share. 
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We first examine the long-run properties of the data.  Table 2 shows the sample-average 

growth rates of final-use TFP (the top panel) and technology (the bottom panel).  In each case, 

the BFK adjustment somewhat reduces the means, particularly for equipment goods; the main 

reason is that there are, on average, moderate estimated increasing returns in equipment-

producing industries.  But the BFK adjustments do not affect the main conclusions about rank 

ordering of mean growth.  Figure 1 shows the ordering visually by plotting the estimated levels 

of final-use technology (with BFK residuals) that correspond to the bottom panel of Table 2.  

Equipment technology rises a bit faster than consumer-durables technology, and much faster 

than technology for government purchases, consumption (nondurables and services), structures, 

or net exports.   (Note that our ―government technology‖ is not the technology in the production 

of services by government workers, which are not included in our measure of output.  

Government technology growth captures improvement in the production technology for  the 

goods that the government buys from private industries.)  

Net-exports technology shows a sharp decline in the 1970s—reflecting terms-of-trade 

shocks associated with oil price shocks and the breakdown of Bretton Woods—but then rises 

fairly strongly thereafter.  The strength of the resurgence does not reflect terms-of-trade shocks 

(the level of the terms of trade moves relatively little after the early 1980s), but rather the indirect 

effects of other technology shocks.  In particular, other sectors matter primarily through their 

effect on exports (since they are the intermediate input into producing trade goods, i.e., imports), 

and export-oriented sectors have tended to have faster-than-average technology growth.  

The general pattern of mean technology growth rates is not surprising, though the modest 

declines in both structures and consumption technology is notable.  In both cases, the declines 

may reflect the difficulties of adjusting for changing quality over time, as the large literature on 

biases in consumer prices has highlighted.   
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Does the marked acceleration in equipment TFP and technology relative to consumption 

TFP and technology simply reflect an acceleration in investment-sector technology?  Such an 

interpretation is implicit or explicit in GHK and much of the subsequent literature that focuses on 

―investment-specific technical change.‖  But changes in consumption technology also affect 

relative technology.  The mean growth rates by subperiod from Table 2 indicate that 

consumption technology, as well as investment technology, showed an acceleration.  Hence, the 

acceleration in relative TFP and technology modestly understates the actual acceleration in 

equipment TFP and technology.   

To what extent do relative final-use output prices provide a good approximation to 

relative final-use TFP or technology?.  The top panel of Table 3 shows that, as expected, the 

price of non-durables and services consumption rises relative to the price of the equipment 

investment.  This trend increase in the relative-price is even more pronounced with the Gordon 

deflators, and is more pronounced in the post-1982 period.  For example, without the adjustment, 

the relative price rises about 2.3 percent in the 1982-2005 period, but the Gordon adjustments 

raise this almost 1-1/2 percent per year to about 3.7 percent (the adjustment, of course, comes 

almost entirely by reducing the denominator of equipment prices). 

Figure 2 plots the levels (cumulated log-changes) of the relative price of consumption to 

equipment, relative technology (equipment less consumption), and relative TFP.  Not 

surprisingly, these track fairly well over long periods of time, particularly relative prices and 

relative TFP.  By the logic of dual growth accounting (where standard TFP can be measured by 

share-weighted growth in factor prices less growth in the output price), we expect relative TFP to 

move closely with relative prices over time.  Even there, however, the two series can diverge for 

a decade or longer.  Relative technology has the same general pattern, though with a lower 

cumulated mean.   
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The bottom panel decomposes the relative final-use output prices for consumption (non-

durables and services, plus government) to equipment investment based on equation (12).  For all 

time periods shown, relative TFP in line (1) is qualitatively similar to relative price growth in 

line (2)—but not identical.  Indeed, the relative price rose more slowly than technology in the 

1960-82 period, but much faster in the post-1982 period.   Looking at the final column, relative 

prices accelerated about 2 percentage points in the second half of our sample; but relative TFP 

accelerated only about 1.6 percentage points.  Hence, the typical macroeconomic shortcut of 

focusing on relative prices substantially overstates the differences in relative TFP, even over a 

period of several decades.  

That ―gap‖ in the pace of acceleration reflects several factors.  For example, line (3) 

shows that share-weighted input prices have been consistently rising for equipment production 

relative to consumption production; however, that input-price wedge has narrowed in recent 

decades.  In terms of the trend increase in input prices in equipment (which would imply that the 

relative price movements should understate relative TFP movements), this could happen if the 

price of capital has been falling relative to wages and if (perhaps contrary to intuition) equipment 

production has a lower capital share. Table 4 confirms that capital‘s share in equipment 

production (calculated as 1[ ]JE Kb I B s  , where Ks  is the vector of commodity capital shares) is, 

indeed,  lower than capital‘s share in consumption production.
20

   

Returning to Table 3, line (4) shows that import prices for equipment have been falling 

markedly relative to import prices for consumer goods.  Not surprisingly, this effect is 

                                                 

20
 Check signs.  Suppose relative TFPs were constant but relative input prices rose for producing 

equipment.  To keep relative TFP unchanged, this implies that the relative output price for equipment should fall.  

Hence, relative price changes understate relative TFP changes.  
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quantitatively more important in the past two decades and is a substantial contributor to the 

difference in rates of acceleration. 

Line (5) shows that the wedge between purchaser and producer prices, reflecting 

primarily sales taxes, contributed modestly to a wedge in all periods.  (The reason turns out to be 

rising sales taxes on consumer goods, which worked to raise consumer prices; the effect of this 

wedge on investment prices alone is relatively small.)  

Tables 5A and 5B show selected correlations for standard TFP and BFK technology 

change, respectively..  The sectoral shocks themselves (rows 1 and 2) are very highly correlated.  

This is not surprising:  In addition to any truly ―common‖ shocks, the final-sector shocks are 

different weighted averages of the same vector of underlying commodity shocks.  However, the 

correlations are lower using the corrected BFK residuals, as one expects:  The BFK method 

eliminates the common mismeasurement from business-cycle variations in factor utilization. 

Our procedure allows us to test the orthogonality assumptions typically used in the 

preceding empirical literature.  In particular, GHK and Fisher (2006) explicitly assume 

orthogonality of what they label ―neutral‖ and (equipment) ―investment-specific‖ productivity 

innovations.  In our two-sector framework, these labels correspond to the consumption-sector 

productivity shock and the relative equipment-investment-consumption shock.  Line 3 of the two 

panels shows the correlation between the ―neutral‖ and ―equipment specific‖ shocks.     

A priori, there seems little reason to expect orthogonality, given that these shocks are 

different mixtures of the same underlying productivity residuals.  But the orthogonality 

assumption works surprisingly well in the data, particularly for the BFK  series, where the 

correlation is very close to zero.  (Note that Fisher (2006) does not assume that observed, 

standard TFP measures technology, so the BFK result is probably more relevant.)  Note also that 
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orthogonality with consumption TFP is a much better approximation than is orthogonality with 

investment TFP, as shown in line 4.
21

 

Finally, what are the dynamic effects of exogenous shocks to different types of 

technology?  Table 6 shows dynamic responses of GDP and its components to different final-use 

technology shocks, with all the dependent variables entered in growth rates.
22

  Table 7 shows the 

same regressions for other interesting macroeconomic variables: hours, wages, a variety of 

prices, and interest rates; variables other than interest rates are entered in log differences.  The R
2
 

shown are for bandpass filtered data, i.e., where the dependent variable and the fitted values are 

first bandpass filtered to focus on variation between 2 and 8 years. 

The challenge is the desire to be comprehensive in including all final-use shocks with the 

cost of using greater disaggregation (e.g., including structures separately), when multicollinearity 

becomes a serious problem.  We aggregate final-use sectors in the way that corresponds to 

typical assumptions in two-sector models:  One sector produces equipment and consumer 

durables; the other produces non-durables and services consumption and structures.  Figure 1 

showed that this aggregation corresponds reasonably well to the low-frequency data.  We also 

add government purchases of equipment to the equipment sector; we add government 

consumption and structures to the consumption aggregate.  We combine equipment with 

consumer durables and government equipment; and we combine nondurables and services 

                                                 

21
 The correlations for the entire period are not the averages of the correlations for the subperiods, because 

the standard deviations over the entire period exceed the average of the standard deviations for the subperiods.  An 

interesting question that we have not yet pursued is what orthogonality of relative TFP and consumption TFP 

implies about the input-output structure of the economy. 
22

 The GDP and investment data are taken directly from published BEA tables.  They have not been 

adjusted using the Gordon investment deflators. 
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consumption with structures and government consumption and government structures.
23

  We also 

include net-exports technology.  For all variables, we include the current value and three lags.   

,  

As the data section noted, we do face a problem in interpreting the terms of trade as 

exogenous.  First, the terms of trade should change with changes in domestic consumption and 

investment technology, if these goods are exported.  Second and more importantly, the terms of 

trade may change for reasons that are clearly not exogenous.  For example, monetary policy can 

change the terms of trade if prices are sticky.  Monetary policy may also react to changes in 

output or hours worked due to non-technology shocks, thus exacerbating the endogeneity 

problem. 

We address this problem by constructing a second set of measures of technology that we 

do think are exogenous, using only industry technology shocks based on the purified BFK 

residuals.  Operationally, we set to zero changes in the terms of trade as well as changes in the 

TFP of sectors 1-5 and 35 as defined in Table 1 (the natural resource industries and government 

enterprises).  We then use this group of rigorously exogenous measures as instruments for the 

various types of technology change in Tables 6 and 7. 

Focusing first on the effects of investment-specific shocks, we find results similar to 

those documented by Gali (1999) and BFK (2006), which are puzzling from the standpoint of a 

simple one- or two-sector RBC model with flexible prices.  Aggregate GDP, non-durables 

consumption, purchases of consumer durables, residential investment and imports all fall 

significantly after a positive shock to equipment technology.  Most strikingly, equipment and 

software investment falls for two years after a positive shock to the technology for producing 

                                                 

23
 Explain how we disaggregated government, as well as experimentation suggesting that the data are not 

inconsistent with this choice of aggregation. 
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investment goods, and the decline is highly significant in the first year.  This last finding is 

especially striking if one considers the likelihood of measurement error in our measures of 

investment output.  Since we are regressing equipment growth on the technology for producing 

equipment,  measurement error in output would create a positive bias in the coefficient.  

Adjusting for measurement error, the true coefficients are likely to be even more negative than 

our estimates.  (There is little autocorrelation in the investment technology growth series, so this 

result doesn‘t seem to reflect predictability that equipment technology will be even better in the 

future.  In some models, news of a future technology improvement will cause demand to contract 

until the improvement is actually realized.)  

Table 7 shows that hours worked fall significantly when investment technology 

improves, and do not recover their pre-shock value even after two years.  Note that this is a 

decline in total hours worked in response to a positive technology shock to a sector that (even 

with the inclusion of consumer durables) produces less than 20 percent of GDP!  Although not 

shown, the updated BFK results show a distinct and significant negative contemporaneous 

correlation between hours growth and aggregated BFK technology.  (The negative effect is more 

pronounced with the original BFK industries, i.e., excluding agriculture, mining, and government 

enterprises). 

As expected, an equipment-technology improvement does lower equipment prices (the 

individual coefficients are not significant, but the cumulative sum is).  Somewhat surprisingly, 

consumption prices also fall—so that the relative price (line 4) isn‘t much affected.  Rather, the 

adjustment in the relative price takes place primarily through the response to consumption 
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technology—and, even there, the main effect is through higher investment prices rather than 

lower consumption prices.  .
24

   

Next we examine the effects of consumption-technology shocks.  Here again we find 

results at odds with simple RBC models which, as we noted, generally predict consumption 

technology neutrality.  We see that consumption-technology shocks increase GDP and non-

durables consumption significantly, but also increase both categories of business investment, 

consumer durables consumption and residential housing, with at least one statistically significant 

impact in each category.  Imports rise significantly, and net exports fall.  Table 7 shows that 

hours also increase, with the change significant at one lag.  As expected, the relative price of 

consumption to equipment falls.   

The final column of the two tables shows the R
2
 of the regression, after bandpass-filtering 

both the dependent variable and the fitted value in order to focus on business-cycle frequencies.  

For quantity variables, especially, the explanatory power is quite high.  Figure 3 shows the fitted 

values of hours and equipment to technology shocks.  The explanatory power of the regression is 

clear.  Comparing the fitted values in the top and bottom panels, it is also clear that, conditional 

on technology, hours and equipment investment move comove positively.  But it is also clear 

that, according to the regressions,  technology innovations did not cause the deep recessions of 

the 1970s and 1980s.  

Our simple model of Section II predicts that business investment should not change in 

response to a consumption technology improvement.  The model did not include residential 

investment and consumer durables.  We conjecture that if the model is extended to allow for 

durable goods to provide services that directly enter the utility function, and incorporates non-

                                                 

24
 Some of this discussion might be referring to older versions of the regressions—we‘re in the process of 

updating the estimates. 
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separability between non-durables consumption and durables services, it would predict roughly 

the results that we find, at least qualitatively,   

Taken together, these results suggest that the earlier findings of Gali (1999) and BFK 

(2006) about the contractionary effects of technology improvements are driven primarily by the 

effects of investment technology shocks.  They also raise an interesting question:  Does any 

fairly standard model predict that consumption technology improvements should be 

expansionary, but investment technology improvements should not?  We believe that a simple 

two-sector model with sticky prices in both sectors and a standard Taylor rule for monetary 

policy can go some way towards matching the results we find.  We are pursuing this approach to 

explaining our findings in current research. 

A reason the sticky price model may be appropriate is the extremely slow pass-through of 

technology to relative prices.  The pass-through was almost imperceptible in the regression 

results.  To explore this further, and more directly, Table 8 regresses relative prices on relative 

technologies.  About 1/3 of the pass-through to relative prices occurs immediately.  After three 

years, the cumulative sum is not significantly different from one. 

Considering the results altogether, we find strong evidence that we cannot summarize 

technology shocks using a single aggregate index.  Aggregation would hold either if (1) all final-

use technology shocks were perfectly correlated or (2) if the different shocks had identical 

economic effects.  Unfortunately, neither condition is satisfied, since Table 5B shows that the 

relevant correlation is between 0.64 and 0.75, and we can statistically reject the hypothesis that 

all the coefficients of investment- and consumption-technology shocks in Tables 5 and 6 are 

identical at all lags.  Hence, it appears important to use multi-sector models to investigate 

economic fluctuations due to technology shocks. 



 38 

The effects for the ―net exports technology shocks‖ are also interesting.  With one or two 

lags, net exports technology improvements have significant positive effects on equipment 

investment, consumer durables, and even residential structures.  Interestingly, the estimated 

effects on non-durables consumption are all close to zero, with small standard errors.  An 

improvement in trade technology increases imports.  There is a statistically significant effect on 

hours worked, but the size of the effect is small.  Recall that our IV procedure guarantees that 

these effects on the terms of trade are being driven by changes in production technology in the 

United States and not, for example, by monetary policy either at home or abroad. 

VII. Conclusions 

Theory suggests that the final-use sector in which technology shocks occur matters for 

the dynamic response of those shocks.  We make this point with the example of consumption-

technology neutrality in the real-business-cycle model.  Consistent with the predictions of the 

model, our empirical results show that consumption- and investment-specific shocks do indeed 

have significantly different economic effects, and the differences persist for at least several 

years. 

The details of the results present several puzzles.  The results for investment-sector 

shocks show that hours decline when investment technology improves, GDP declines sharply 

and, most surprisingly, investment itself declines strongly.  These results are consistent with the 

findings of Gali (1999) and BFK (2006), who interpret them as evidence in favor of nominal 

price rigidities.  Our findings for consumption shocks are quite different, however:  they show 

significant increases in GDP and in the consumption of both non-durables and durable goods, 

including housing.  Whether these results taken together can be explained by richer or 

differently-parameterized flexible-price or sticky-price models with multiple sectors is at this 

point an open question, although we find two-sector sticky price models promising in this regard. 
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A novel contribution of this paper is a new method to measure sector-specific 

technologies that does not rely simply on relative price changes, as frequently used in the macro 

literature.  In special cases, the relative-price measures are appropriate; but in general, they are 

not.  We show that the conditions necessary for relative prices to measure relative technologies 

do not hold in the data.  Since our method allows us to test hypotheses that are identifying 

assumptions in other works, it is a robust, albeit data-intensive, way of checking whether these 

assumptions hold in any situation where their validity is in doubt. 
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Appendix A:  The Optimal Mode of Production 

Section II posits  production functions for consumption and investment, each of which 

are functions of the capital and labor dedicated to that sector as well as the sector-specific 

technology level.  But in the data, there are many sectors that use not only capital and labor, but 

use intermediate inputs from a large number of other sectors.   

How does the messy data correspond to the stylized theory?  We discuss a benchmark 

conceptualization that maps the data that to the dynamic theory.  For now, we assume the 

economy is closed to international trade, and assume constant returns everywhere.  Then, 

conceptually, we can think about there being a stream of production, using capital and labor 

dedicated to each specific final good, which eventually culminates in the given final good.   

Unfortunately, we don‘t observe the stream of dedicated factors of production. More 

concretely, suppose each final good is produced on a separate island, using only the capital and 

labor that is on that island.  Of course, if the final good is ―shoes‖, then some of the capital and 

labor is used to produce leather, some to produce rubber, some to produce natural gas to generate 

electricity, some to drive trucks to transport goods from one factory to another, and so forth.  The 

available data don‘t directly tell us how much capital and labor is used to produce shoes.  

Instead, the data tell us how much capital and labor and intermediate inputs of various sorts are 

used to produce rubber; or how much are used to produce trucking services; and so forth.  

Nevertheless, we can derive what the production function looks like for a given element 

of the final good vector (cars, say, or shoes, or turbines), after working through the chain of 

production.  If there is then an aggregator function (e.g., a Cobb-Douglas consumption 

aggregator), then the resulting final-goods-sector technology maps exactly to what we use in the 

paper.  This aggregator can be insert into a simple dynamic model such as that used in the paper. 

Define net output of a commodity as the quantity produced that is used in the direct 

production of final goods—that is, the amount not used in the production of intermediate goods.  

Gross output of a commodity is the total amount of the commodity produced for all purposes.   

Let R be the rental rate for capital K, W the wage for labor N, and Z a vector of 

multiplicative technology shifters.  Consider the cost minimizing plan for making one unit of net 

output of commodity i available for use in producing final goods: 

 

(1.1) 

Pi (R,W ,Z )  min
K̂ij , N̂ij , X̂ij ,M̂ ij

R K̂ij
j

 W N̂ij
j



s.t. X̂ii  1 M̂ ii





X̂ij  M̂ i j



 (j  i)

ln(X̂ij )  ln(Z j )  a jK ln(K̂ij )  a jN ln(N̂ij )  b j ln(M̂ ij ) (j),

 

The i subscript refers throughout to the fact that the program is intended to produce net 

output of commodity i.  The hats on key variables are a reminder that the program is for one net 

unit of commodity i. Pi(R,W ,Z)  is the minimum average (and marginal) cost of producing 

commodity i. K̂ij is the amount of capital used directly to produce commodity j in order to 

produce one net unit of commodity i.  N̂ij  is the amount of labor used directly to produce 

commodity j in order to produce one net unit of commodity i.  X̂ij  is the total gross amount of 
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commodity j used to produce one net unit of commodity i. M̂ij
is the amount of commodity  

used directly to produce commodity j in order to produce one net unit of commodity i. Z j is the 

multiplicative technology shifter for producing commodity j. a jK is capital‘s share in the direct 

inputs to commodity j. a jN is labor‘s share in the direct inputs to commodity j.  Finally, b j is the 

share of commodity  in the direct inputs to commodity j.    

Our objective in this appendix is to find the boiled down production function for net 

output of commodity i as a function of the technology vector and the total capital and labor 

inputs used directly or indirectly to produce net output of commodity i.  We will use Shephard‘s 

Lemma (also called the derivative principle) to find capital‘s share  i  and labor‘s share 1i , 

and the corresponding method to find the elasticity ij  of net output with respect to each 

component Z j of the technology vector Z.   To be specific, by Shephard‘s Lemma, capital‘s share 

in the boiled-down net output production function is given by  

(1.2)  i 
R

Pi (R,W ,Z)

Pi (R,W ,Z)

R
,  

labor‘s share in the net output production function is given by  

(1.3) 1 i 
W

Pi (R,W ,Z)

Pi (R,W ,Z)

W
,  

and the elasticity of the net output production function with respect to Z j is equal in 

magnitude but opposite in sign to the elasticity of the unit cost function with respect to Z j  

(1.4) ij  
Z j

Pi (R,W ,Z )

Pi (R,W ,Z)

Z j
. 

 

These elasticities of the unit cost function can be found by using the Envelope Theorem.  

First, write the Lagrangian for (1.1) as  

 

(1.5) 

Li  R K̂ij
j

 W N̂ij
j



 ij
j

 ln(X̂ij )  ln(Z j )  a jK ln(K̂ij )  a jN ln(N̂ij )  b j ln(M̂ ij )










 ii   ij M̂ i j












  X̂ij











j

 .

 

The first order conditions with respect to K̂ij  and N̂ij  yield this pair of equations: 

(1.6) RK̂ij (R,W ,Z)  ajKij (R,W ,Z)  

(1.7) WN̂ij (R,W ,Z)  ajNij (R,W ,Z).  

where we have made explicit the dependence of quantities and Lagrange multipliers 

coming out of the optimal program on R, W, and Z.  By the definition of a jK  as the share of 

capital in direct production,  

(1.8) RK̂ij (R,W ,Z)  ajKPj (R,W ,Z)X̂ij (R,W ,Z).  



 42 

Together, Equations (1.6)  and (1.8) imply that  

(1.9) ij (R,W ,Z)  Pj (R,W ,Z)X̂ij (R,W ,Z). 

To get more insight into ij define  ij  as the total gross nominal output of commodity j 

used to produce 1

Pi (R,W )
 net units of commodity i.  That is,  

(1.10) ij (R,W ,Z) 
Pj (R,W ,Z)

Pi (R,W ,Z)
X̂ij (R,W ,Z),  

Using Equation (1.10), Equation (1.9) can be written as  

 

(1.11) ij (R,W ,Z )  ij (R,W ,Z )Pi (R,W ,Z ). 

To find  ij ,  consider the relationship between the net output production functions and 

the direct production functions.  Because of the properties of Cobb-Douglas production 

functions, the value of the commodity j used directly to produce 1 net unit of commodity i  is bij .  

In turn, obtaining bij  net units of commodity j for direct use in the production of commodity i 

requires, in turn, the overall production of a valuebij j  of commodity .  Overall, the total value 

of commodity  produced must be i  bij j
j

 , except that when  i , ii  1 bij ji
j

 , since 

one must account for the original unit value of commodity i that is to be produced.  In matrix 

form, 

 

(1.12)   I  B,  

 

where   [ij ],   [bij ] , and I is the identity matrix.  Solving for  ,  

(1.13)   (I  B)1. 

Note that for the Cobb-Douglas case, the matrix   is a constant.   

Now return to the problem of finding the parameters of the boiled-down, net output 

production function.  By the Envelope Theorem,  

 

(1.14)  i 
R

Pi

Pi

R

R

Pi

Li

R


R K̂ij
j



Pi


ija jK
j



Pi


ijPia jK
j



Pi
 ija jK

j

 . 

Note that Pi ,  K̂ij , ij , and a jK are all functions of R, W, and Z, since the optimal program 

for producing one unit of net output of commodity i depends on R, W, and Z.  ( Li  is a function of 

almost everything in sight.)  Similarly,  

(1.15) 1 i  ija jN .
j

  

In vector form,  

(1.16)  aK  

and  

 

(1.17) 1 aN . 
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where 1 in Equation (1.17) represents a vector of 1‘s.   These are all constants in the 

Cobb-Douglas case.  Finally, the elasticity of output with respect to component j of the 

technology vector is  

(1.18) ij  
Z j

Pi

Pi

Z j
 

Z j

Pi

Li

Z j

ij

Pi
 ij .  

Since all the elasticities of the boiled-down net output production function are constant, it 

must be given by  

(1.19) Yi  constant Ki
iNi

1i Z j
ij

j

 = constant Ki

ija jN
j


Ni

1 ija jN
j


Z j
ij

j

 ,  

where Yi  represents net output of commodity i.   

Now suppose we calculate the TFP residual, f

idz , for net (final) output Yi .  In its natural 

growth-rate form, this is: 

 f

i ij jj
dz dz  

In vector terms, we can write this as: 

 1( )fdz dz I B dz    

Now suppose there is a Cobb-Douglas consumption aggregator (reflecting the form of the 

utility function).  Growth in this aggregate is thus equal to share-weighted growth in its 

components.  Hence: C idc b dy , where Cb  is a row vector of nominal shares in consumption.  If 

we now calculate TFP for this aggregate dc, we find: 

 1( )C Cdz b I B dz   

This expression exactly matches what we used in the text.  Of course, the Cobb-Douglas 

assumption is not restrictive—we could, instead, use a translog index, which provides a second-

order approximation to any aggregator.  The same expression holds with a translog, except that 

the shares would be time-varying, not constant. 

A similar logic obviously applies to other final expenditure categories.  Thus, we can 

think of there being a production function (implicit, perhaps not explicit) for consumption as a 

function of capital and labor and consumption-technology; and a corresponding production 

function for investment.  We can then embed these functions into our dynamic macroeconomic 

model. 

 

Appendix B: Further Details on I-O Manipulations 

This appendix provides further details on how we combine the use and make tables to 

produce a commodity-by-commodity use table and commodity technology change measures. As 

in the text, we omit time subscripts for notational convenience. 

As noted in the text, the standard use table shows the flows of commodities to final uses 

as well as to intermediate uses in industry (not commodity) production.  We use the information 

in the make table to produce a commodity-by-commodity use table as follows.  Each row of the 

make table corresponds to an industry; the columns correspond to commodities.  So a row tells 

what commodities are produced by each industry.  Consider the make table M in row-share form, 

so that element mij corresponds to the share of output of industry i that consists of commodity j.  

From the standard use table, we know the shares of each input (the q commodities plus capital 

and labor) in industry production; define that commodity-by-industry use matrix as U
I
, where 

columns correspond to industries and each row corresponds to a separate input into that industry.  
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(One of these input commodities is so-called non-competing imports.)  Conceptually, this 

commodity-by-industry use table is a ―garbled‖ version of the commodity-by-commodity use 

table, which we denote by U.  The make table tells us the garbling: IUM U  .   

For example, suppose there are two industries, which produce using inputs of two 

commodities and one primary input, labor.  These matrices have the following form: 

 
11 12 11 11 12 12 11 21 12 22

11 21

21 22 21 11 22 12 21 21 22 22

12 22

1 2 1 11 2 12 1 21 2 22

I

L L L L L L

u u u m u m u m u m
m m

UM u u u m u m u m u m U
m m

u u u m u m u m u m

    
    

         
        

 (20) 

The columns of U sum to one, and give the factor shares in producing each commodity.  

On the right hand side, the elements are industry factor shares, which are weighted averages of 

the commodity factor shares, where the weights are the shares of industry output accounted for 

by each commodity.  For example, consider the upper left element,  
11 11 12 12u m u m .  

11 11u m  is the 

factor share of commodity one in the production of commodity one, u11, multiplied by the share 

of the output of industry one that consists of commodity one; 
12 12u m  is the factor share of 

commodity one in the production of commodity two, multiplied by the share of industry one that 

consists of the output of commodity two.  Under the assumption that the commodity factor 

shares are equal—regardless of which industry produces the commodity—the sum of these two 

pieces tells us the factor share of commodity one in the production of the composite output of 

industry one.  More generally, the factor shares in each observed industry equal the weighted 

average of the factor shares in producing each of the underlying commodities that the industry 

produces.  It follows from this discussion that we can obtain the underlying commodity-by-

commodity factor shares using the relationship: 1IU U M  . 

Second, we want a vector of disaggregated productivity innovations in terms of 

commodities rather than industries.  Suppose we have a column vector of industry productivity 

growth rates, dz
I
.  We again interpret this as a garbled version of the column vector of 

commodity productivity growth rates, dz, that we are interested in; the make table again tells us 

the garbling:  I

t tM dz dz .  In the two-commodity example: 

 
1, 11 1, 12 2,11 12 1,

2, 21 1, 22 2,21 22 2,

I
t t t t

I
t t t t

dz m dz m dzm m dz

dz m dz m dzm m dz

      
               

 (21) 

The industry productivity growth rates are a share-weighted average of the commodity 

productivity growth rates, where the weights depend on what commodities the industry produces.  

Hence, given the industry productivity-growth vector and the make table, the relationship 
1 I

t tdz M dz  gives us the underlying commodity productivity growth vector. 

Appendix C:  Relative Prices and Relative TFP 

To begin, let‘s review the link between observed domestic industry TFP and overall 

commodity supply TFP.  First, we have assumed that domestic industry TFP growth, I

tdz  is 

―garbled‖ domestic commodity TFP growth, D

tdz where the make table tells us the garbling: 
D I

t tM dz dz .  Hence, 1D I

t tdz M dz .  

Second, we need to rescale commodity TFP by the domestic-supply share.  To see this, 

observe that ―supply‖ output is the aggregate of domestic production and imported supply; it is 

produced using domestic imports and, as an additional intermediate input, the imported supply of 

the commodity.  In particular, we can write supply TFP as follows: 
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[ (1 ) ] [ (1 ) ]

( )

i i Ki i Li i Ni i

D D D F D D D D F

i i i i i Ki i i Li i i Ni i i i

D D

i i Ki Li i Ni i

D D

i i

dz dy s dk s dl s dn

dy dy s dk s dl s dn dy

dy s dk s dl s dn

dz

     





   

       

   



 

In this expression, tildes over a variable represent domestic production values.  (Note that 

for capital and labor, the domestic and total inputs are the same, so that no tilde is necessary.)  

We have also used the fact that, for example, 

    ( )D D D D F F D D D

Li i i i i i i i i i i i i i i i Lis W L PY P Y P Y P Y W L P Y s    .   

Combining these two pieces, we have that 1D I

i i tdz M dz  .  Inserting the dual measure 

of TFP, we have: 

   

1

1 1 1 1

,

( )

(1 ) (1 )

.

D Ind Ind Ind P

i i K K L L N N

D Ind D Ind D Ind D F D P D F

i K K i L L i N N i i i i i

C C C P C

K K L L N N

dz M s dp s dp s dp dp

M s dp M s dp M s dp dp M dp dp

s dp s dp s dp dp



     



   

   

       

   

Note that, in the last line, we have the share matrices from our manipulations of the use and 

make tables.  The commodity input prices are defined implicitly in order to make the identity 

hold; in essence, this approach weights industry prices by both the (inverse) make table and by 

the industry factor shares.  (This weighting captures the intuition with Divisia indices of 

weighting by relative factor shares.)
25

  We have included the foreign supply price in intermediate 

inputs as well as in the producer commodity supply price.  

 

We can now seek to understand the relationship between relative TFP and relative output 

prices.  In particular, the equation we want to understand is: 

 

1

1 ,

1 1 ,

( )( )

( )( ) [ .]

( )( ) [ ] ( )( ) [ ]

J C J C

C C C P C

J C K K L L N N

C C C P C

J C K K L L J C N N

dz dz b b I B dz

b b I B s dp s dp s dp dp

b b I B s dp s dp b b I B s dp dp





 

   

     

       

 

Consider the final piece in brackets for the case of two domestic commodities, plus the 

international trade commodity: 

                                                 

25
 For example, in Matlab, one can calculate 

1 ./C D

K i K K Kdp M s dp s  , where ―./‖, or dot-division, does 

element-by-element division. 
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M
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M
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    

 

 
 
   


 

D,Purch ,

1 1 1

D,Purch ,

2 2 2

( )

( )

0

D D P

D D P

dp dp

dp dp





 
    
   

 

(Notation might need to be cleaned up, especially with the difference between the 

domestic purchase price (as measured in dpz) and the domestic producer price (rearranged 

producer price)—but the identity is correct and holds in our data.) 

.  Note that  13 1 13 1(1 )D Db s     is the final column of the B matrix.  The first term in 

brackets is the relationship we have used in the text.  The second term is the difference between 

the commodity-specific import price and the aggregate import price.  The final term is the 

difference between the price paid by a user of a commodity price (what‘s relevant for the supply 

price), and the price received by a domestic producer.  This final term can be nonzero because of 

taxes that drive a wedge between producer and purchaser prices, or because of discrepancies in 

the data between producer-side data and commodity-use data. 

We now substitute into the full expression: 

 

 

1 1 ,

1

Import
D,Purch13 1

1 1 1

1 Import 1

23 2

( )( ) [ ] ( )( ) [ ]

( ) ( )( ) [ ]

(

( )( ) ( )( )

0

C C C P C

J C J C K K L L J C N N

C C

C J J C K K L L

M
D D

M

J C J C

dz dz b b I B s dp s dp b b I B s dp dp

b b dp b b I B s dp s dp

b dp dp dp dp

b b I B b dp dp b b I B



 



 

        

     

   
       
 
 
 

,

D,Purch ,

2 2 2

)

( )

0

Relative price + Input prices + Import-prices + sales-tax wedge

P

D D Pdp dp

 
 

 
 
 



 

The first term is the Divisia index of the relative price of consumption to investment; the 

second is relative share-weighted input prices.  The third reflects relative import prices:  It is 

negative if, over time, import prices for investment goods have fallen relative to import prices for 

consumption goods.  The final term reflects (primarily?) indirect business taxes, such as sales 

taxes, that drive a wedge between producer and purchaser prices.  It is negative if taxes on 

investment goods have been falling relative to taxes on consumption goods.   

 

In the text, we write this expression in a more notationally compact manner as: 
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 

1

1 Trade-column Commod-import-price 1 D,Purch D,Prod
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M D
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       

 e

 

Appendix D: Updating Basu, Fernald, and Kimball (2004) Industry Residuals 

With our new dataset, we update the estimated industry technology series produced in 

Basu, Fernald, and Kimball (2006).  The approach uses a Hall (1990)-style regression, which 

allows for non-constant returns to scale and imperfect competition; BFK add hours-per-worker to 

the regression as a proxy for unobserved variations in labor effort and capital‘s workweek.  The 

basic idea behind the utilization proxy is that a cost-minimizing firm operates on all margins 

simultaneously, both observed and unobserved.  As a result, changes in observed margins can 

proxy for unobserved utilization changes.  If labor is particularly valuable, for example, firms 

will work existing employees both longer (observed hours per worker rise) and harder 

(unobserved effort rises).   

More specifically, let industries have the following gross-output production function: 

(22)   , , ,i

i i i i i i i iY F A K E H N M Z .  

The industry produces gross output, Yi, using the capital stock Ki, employees Ni, and 

intermediate inputs of energy and materials Mi.  The capital stock and number of employees are 

quasi-fixed, so their levels cannot be changed costlessly.  But industries may vary the intensity 

with which they use these quasi-fixed inputs:  Hi is hours worked per employee; Ei is the effort 

of each worker; and Ai is the capital utilization rate (that is, capital‘s workweek). Total labor 

input, Li, is the product EiHiNi.  The production function F
i
 is (locally) homogeneous of i  in 

total inputs.  i exceeding one implies increasing returns to scale, reflecting overhead costs, 

decreasing marginal cost, or both.  Zi indexes technology.  

With cost minimization, the standard first-order conditions give the output elasticities, 

which we use to weight growth of each input.  Let idx  be observed input growth, and idu  be 

unobserved growth in utilization.  (For any variable J, we define dj as its logarithmic growth rate 

1ln( / )t tJ J  .)  This yields: 

(23)  ( )i i i i idy dx du dz   ,  

where  

(24)  ( )i Ki i Li i i Mi idx s dk s dn dh s dm    ,   

  i Ki i Li idu s da s de  ,  

and Jis  is the ratio of payments to input J in total cost. 

The challenge is to derive a suitable proxy for unobserved output utilization variation, 

dui..  Suppose firms seek to minimize the present discounted value of costs for any given path of 

output.  There is a convex costs of adjusting the quasi-fixed factors (K and N).  Total 

compensation per worker is    ,WG H E V A , where W is the base wage; the function G 

specifies how the hourly wage depends on effort, E, and the length of the workday, H; and V(A) 

captures a shift premium associated with varying capital‘s workweek.  (This true shadow wage 

might be implicit, and not observed in the data at high frequency.)  Thus, firms must pay a higher 
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wage to get workers to work longer (on a given shift), or to work harder, or to work at night.  In 

this environment, BFK show that, as a first-order approximation, the following expression holds: 

 

 .i i i i i idy dx dh dz     

The coefficient 
i , which can be estimated, relates observed hours growth to unobserved 

variations in labor effort and capital‘s workweek.  That coefficient incorporates various 

elasticities including, in particular, the elasticity of unobserved effort with respect to hours, from 

the implicit function relating them (which came out of optimization).   

We estimate these equations using instrumental variables, in order to control for 

correlation between technology shocks and input growth.  As described in BFK, we use updated 

versions of two of the Hall-Ramey instruments: oil prices and growth in real government defense 

spending.  For oil, we use increases in the U.S. refiner acquisition price.  We also use, as a third 

instrument, an updated estimate of Burnside‘s (1996) quarterly Federal Reserve ―monetary 

shocks‖ from an identified VAR.  In all cases, we have quarterly instruments; we sum the four 

year t-1 quarterly shocks as instruments for year t.
26

 

Specific regression results will be available in a later version of the paper.  Relative to the 

BFK estimates, parameters are often somewhat different (reflecting both data revisions and some 

differences in data definitions), but qualitatively, results appear consistent with the earlier 

estimates.  In particular, when we use the old and new data, constrained to the common sample 

period of 1961-1996, the correlation between the resulting Domar-aggregated BFK technology 

shocks (restricted to the BFK industry sample, which is the non-farm, non-mining private 

economy) is about 0.7. 

We need residuals for all commodities (industries) that are used as intermediate inputs or 

that use intermediate inputs.  BFK did not estimate residuals for agriculture (commodity 1, in 

Jorgenson‘s mnemonics), mining (2-5), or government enterprises (35).  TFP is highly volatile, 

and the instruments have no explanatory power.  In the updated Jorgenson dataset, the 

instruments also have very low explanatory power for inputs into petroleum refining (16), 

finance, insurance, and real estate (33), and services (34).  These are large sectors but, at least for 

FIRE and services, are relatively uncorrelated with developments in the overall economy.  For 

agriculture, mining, and government enterprises (1-5, 35), we simply use the uncorrected TFP 

residuals as our measure of BFK technology—i.e., we make no correction for utilization or non-

constant returns to scale.  For petroleum refining, FIRE, and services, we constrain returns to 

scale to equal one, but allow for utilization effects.  (The first-stage fit was extremely poor for 

overall inputs; the estimated returns to scale coefficients were implausibly small and imprecisely 

estimated.  However, these constraints had little qualitative effect on the properties of the 

resulting residuals.)   

To conserve parameters, we restrict the utilization coefficient within three groups:  

durables manufacturing (11 industries); non-durables manufacturing (10); and non-

manufacturing (8). 

For trade-goods technology (commodity 36), we use the terms of trade directly in this 

version of the paper.  It is, of course, likely to have an important endogenous component, 

responding to a wide range of other shocks (e.g., demand shocks at home and abroad).  Thus, a 

                                                 

26
  BFK find that results are robust to different combinations and lags of the instruments; results are not 

driven by any one of these instruments.  They also discuss the small sample properties of instrumental variables.    
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reduced-form shock to, say, hours worked (e.g., a labor supply shock, or a monetary shock) 

could affect the terms of trade and thereby affect our measures of technology.  As a result, we 

also experiment with simply zeroing out the terms of trade shock.  These results will be included 

in a later draft of the paper. 
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Table 1.  Commodity Final-Use Shares, 1960-2005 

 

Investment in Equipment Investment in Structures NDS Consumption Durables Consumption Government Trade

Final-use 

share, b JEi

I-O Share,  

b JEi [I-B]
-1

Final-use 

share, b JSi

I-O Share,  

b JSi [I-B]
-1

Final-use 

share, b Ci

I-O Share,  

b Ci [I-B]
-1

Final-use 

share, b CDi

I-O Share,  

b CDi [I-B]
-1

Final-use 

share, b Gi

I-O Share,  

b Gi [I-B]
-1

Final-use 

share, b Ti

I-O Share,  

b Ti [I-B]
-1

Agriculture -0.66 2.81 0.00 3.04 1.21 9.95 0.01 4.06 0.03 3.83 0.00 13.86

Metal mining 0.00 0.65 0.00 0.42 0.00 0.15 0.00 0.56 0.00 0.44 0.00 0.86

Coal mining 0.00 0.60 0.00 0.41 0.00 0.63 0.00 0.59 0.00 0.74 0.00 1.52

Oil and gas extraction 0.00 2.29 0.00 2.30 0.00 4.27 0.00 2.15 0.00 4.02 0.00 4.78

Non-metallic mining 0.00 0.23 0.00 1.29 0.00 0.19 0.00 0.26 0.00 0.64 0.00 0.61

Construction 0.00 1.38 93.61 94.66 0.83 2.84 0.12 1.55 35.62 37.12 0.00 1.62

Food and kindred product 0.55 3.63 0.00 1.52 9.96 15.34 0.04 4.34 1.92 4.26 0.00 8.64

Tobacco -0.06 0.14 0.00 0.08 0.90 1.17 0.00 0.20 0.00 0.13 0.00 1.23

Textile mill products 0.86 2.40 0.00 0.85 0.25 2.04 1.20 3.27 0.08 1.07 0.00 2.18

Apparel 0.10 0.64 0.00 0.19 3.37 3.94 0.38 1.07 0.45 0.79 0.00 1.27

Lumber and wood 1.42 3.20 0.00 7.51 0.01 0.83 0.36 2.04 0.05 3.59 0.00 2.30

Furniture and fixtures 3.18 3.70 0.00 0.47 0.00 0.09 5.11 5.75 0.50 0.86 0.00 0.59

Paper and allied 0.60 3.18 0.00 1.68 0.52 3.15 0.10 3.32 0.74 3.46 0.00 4.47

Printing, publishing and 0.20 0.99 0.00 0.51 0.62 1.86 1.86 2.93 1.78 2.82 0.00 1.33

Chemicals 0.85 7.38 0.00 4.83 2.21 7.19 0.18 7.29 1.43 7.11 0.00 14.71

Petroleum and coal products 0.48 2.66 0.00 3.10 2.62 5.03 0.02 2.37 2.63 5.67 0.00 4.69

Rubber and misc plastics 0.43 3.61 0.00 2.35 0.15 1.61 2.31 5.64 0.37 2.65 0.00 3.52

Leather 0.02 0.12 0.00 0.04 0.68 0.89 0.12 0.24 0.03 0.11 0.00 0.37

Stone, clay, glass 0.09 1.38 0.00 6.53 0.03 0.88 0.81 2.18 0.11 3.26 0.00 1.75

Primary metal -0.23 12.34 0.00 8.49 0.00 2.18 0.32 9.97 0.21 8.16 0.00 10.97

Fabricated metal 2.05 8.82 0.00 9.62 0.08 2.26 1.61 7.83 1.54 7.87 0.00 7.11

Machinery, non-electrical 26.75 35.83 0.00 4.84 0.01 2.49 1.85 7.84 2.55 7.84 0.00 18.06

Electrical machinery 8.13 16.28 0.00 5.08 0.14 2.29 9.56 15.82 2.85 8.16 0.00 12.33

Motor vehicles 16.69 22.44 0.00 1.12 0.00 1.43 25.40 33.06 1.84 3.91 0.00 10.37

Transportation equipment 3.66 6.32 0.00 0.84 0.00 0.95 2.77 5.18 10.93 14.80 0.00 10.16

Instruments 8.38 10.12 0.00 0.85 0.12 0.94 1.67 3.04 4.15 5.70 0.00 4.85

Misc. manufacturing 1.03 1.42 0.00 0.42 0.51 0.86 4.16 4.72 0.31 0.69 0.00 1.24

Transportation 1.06 7.81 0.00 6.32 2.78 7.92 1.71 8.67 3.53 10.29 0.00 15.98

Communications 1.09 3.18 0.00 1.65 2.50 5.16 0.02 2.08 1.74 3.83 0.00 2.80

Electric utilities 0.00 2.56 0.00 1.90 2.84 5.13 0.04 2.84 2.83 5.00 0.00 2.99

Gas utilities -0.02 1.41 0.00 1.20 1.09 2.99 0.01 1.46 0.26 1.95 0.00 1.95

Wholesale and Retail Trade 13.50 25.98 0.00 12.97 21.88 29.17 36.90 48.89 2.01 12.93 0.00 21.54

Finance Insurance and Real Est. 0.00 8.76 6.39 13.93 13.93 25.95 0.33 9.94 4.48 13.11 0.00 16.81

Services 9.82 23.97 0.00 15.60 29.12 44.89 0.93 16.15 12.71 27.21 0.00 17.70

 
Notes: For each final good, the first column shows expenditure shares (which sum to 100 percent).  The second column shows the shares after passing 

through the input-output matrix to account for the importance of the chain of intermediate suppliers.
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Table 2.  Sample average growth rates of sector-specific technologies 

(Standard TFP and BFK estimates) 

 

A. Final-goods sector TFP growth 

(percent change, annual rate) 

 1960-2005 1960-1982 1982-2005 

(1) Consumption TFP, dzC 0.10 0.06 0.13 

    

(2) Durables Consumption, TFP dzCD 

 

1.81 1.17 2.42 

(3) Investment TFP, dzJ 

3a. Equipment dzJE 

3b. Structures dzJS 

 

0.95 

2.60 

-0.81 

0.24 

1.80 

-1.04 

1.62 

3.37 

-0.58 

(4) Government TFP, dzG 

 

(5) Trade TFP, dzTrade 

 

0.99 

 

0.70 

0.47 

 

-1.46 

1.49 

 

2.77 

 

 

B. Final-goods sector technology, using Basu, Fernald, Kimball industry shocks 

(percent change, annual rate) 

 

 1960-2005 1960-1982 1982-2005 

(1) Consumption TFP, dzC -0.17 -0.28 -0.07 

    

(2) Durables Consumption, TFP dzCD 

 

1.06 0.43 1.66 

(3) Investment TFP, dzJ 

3a. Equipment dzJE 

3b. Structures dzJS 

 

0.40 

1.78 

-1.06 

-0.28 

0.98 

-1.28 

1.04 

2.55 

-0.85 

(4) Government TFP, dzG 

 

(5) Trade TFP, dzTrade 

 

0.47 

 

-0.15 

-0.14 

 

-2.34 

0.98 

 

1.95 

 

 

Notes: In the top panel, TFP is calculated for domestic industry production  in the 

Jorgenson dataset, converted to a commodity-supply basis, and aggregated to final-use sectors as 

described in the text.   The bottom panel uses industry residuals estimated following Basu, 

Fernald, and Kimball (2006), as described in the text..  
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Table 3.  Relative output prices, relative input prices, and relative sectoral TFP 

(percent change, annual rate)  

 

A.  Prices of nondurable and services consumption relative to price of equipment 

investment, 

 

 1960-2005 1960-1982 1982-2005 

Jorgenson –unadjusted for 

alternative deflators 

1.50 0.68 2.28 

Jorgenson – adjusted with 

Gordon deflators 

2.67 1.61 3.67 

 

Notes: Price index for consumption of non-durables and services is calculated as a 

chained-price index.   

 

 

B. Jorgenson data (adjusted with Gordon deflators): 

Relative prices and relative sectoral TFPs 

 

 Full 

Sample 

(1)  

1960-

1982 

(2)  

1982-

2005 

(3) 

Acceleration 

((3) – (2))  

 

(1) Relative TFP (Equip. invest. relative to 

NDS consump.) 

 

2.57 1.76 3.35 1.59 

(2) Relative price (NDS consump. relative to 

equip. investment) 

2.67 1.61 3.67 2.06 

     

(3) Relative primary input prices (equip 

relative to NDS cons.) 

 

0.26 0.32 0.20 -0.12 

(4) Relative import prices (equip. relative to 

NDS cons.) 

 

-0.48 -0.27 -0.69 -0.42 

(5) Relative sales tax wedge (equip. relative 

to NDS cons.) 

0.13 0.09 0.17 0.07 

     

 

Notes:  Terms are defined in the text.  NDS consumption is non-durables and services.  

Lines (2) through (5) sum to line (1). 
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Table 4.  Final-Use Capital Shares 

 

final-good category 
 
 

capital share 

Consumption (Non-durables and services ) 0.36 

Consumer Durables 0.31 

Equipment Investment 0.30 

Structures 0.26 

Government 0.30 

     Government Consumption 0.38 

     Government Equipment 0.26 

     Government Structures 0.28 

Net Exports 0.35 

  

sample averages, 1961-2005 

 

Notes:  For final-use vector bh, where { , , , , , , , , }h C CD JE JS G GC GE GS NX , capital‘s 

share is calculated as 1[ ]h Kb I B s  , where Ks  is the vector of commodity capital shares 
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Table 5.  Correlations of sector-specific residuals 

 

 

A. Selected correlations of sectoral TFP 

 

 

 1960-2004 1960-1982 1982-2004 

(1) Corr(dzJ, dzC) 

 

0.84 0.91 0.72 

(2) Corr(dzJE, dzC) 

 

0.76 0.87 0.53 

(3) Corr(dzJE - dzC, dzC) 

 

(4) Corr(dzJE- dzC, dzJ) 

 

0.26 

 

0.63 

0.46 

 

0.64 

-0.13 

 

0.47 

 

 

 

 

B. Selected correlations of sectoral BFK technology 

 

 

 1960-2004 1960-1982 1982-2004 

(1) Corr(dzJ, dzC) 

 

0.77 0.81 0.77 

(2) Corr(dzJE, dzC) 

 

0.64 0.71 0.60 

(3) Corr(dzJE - dzC, dzC) 

 

(4) Corr(dzJE- dzC, dzJ) 

 

0.03 

 

0.48 

-0.01 

 

0.38 

0.00 

 

0.45 

 

 

Notes: dzJ is TFP or technology for overall investment; dzJ,E is for equipment and 

software; dzC is for non-durables and services consumption.  With 45 observations, a correlation 

of 0.25 is significant at the 10 percent level and 0.30 is significant at the 5 percent level; with 22 

observations, a correlation of 0.36 is significant at the 10 percent level and 0.43 is significant at 

the 5 percent level.  See also notes to Table 3. 
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Table 6   Regression results for GDP Components 

  

 

dzjecd dzjecd(-1) dzjecd(-2) dzc dzc(-1) dzc(-2) dznx dznx(-1) dznx(-2) R
2

1 GDP -0.70 -0.28 0.25 0.73 0.66 -0.28 -0.07 0.09 0.09 0.57

(0.15) (0.09) (0.18) (0.20) (0.26) (0.19) (0.11) (0.05) (0.10)

2 Investment -2.65 -1.91 1.11 1.34 2.17 -1.18 0.05 0.24 0.83 0.34

(equipment and software) (0.81) (0.61) (0.58) (0.90) (0.86) (0.90) (0.27) (0.29) (0.44)

3 Consumer durables -1.47 -0.32 0.61 1.98 0.95 -0.59 0.20 0.39 0.22 0.59

(0.27) (0.24) (0.44) (0.56) (0.73) (0.42) (0.17) (0.19) (0.21)

4 Consumption -0.30 -0.05 -0.01 0.35 0.27 0.15 0.03 0.01 0.02 0.65

(Nondur+serv) (0.12) (0.07) (0.11) (0.13) (0.14) (0.16) (0.06) (0.03) (0.06)

5 Investment -1.25 -2.06 -0.16 -0.65 3.44 0.33 0.01 -0.36 0.44 0.39

(nonresidential structures) (0.77) (0.49) (0.57) (0.85) (0.92) (0.88) (0.32) (0.40) (0.44)

6 Investment -2.07 0.60 1.14 5.80 0.47 -3.38 -0.67 1.38 -0.12 0.46

(residential structures) (0.85) (0.90) (0.63) (1.81) (1.09) (1.74) (0.76) (0.61) (0.37)

7 Exports -0.49 -0.11 0.79 -0.01 0.35 -0.68 -0.26 -0.15 0.27 0.01

(0.67) (0.47) (0.55) (0.51) (0.87) (0.76) (0.24) (0.21) (0.25)

8 Imports -1.77 -1.07 0.79 1.12 0.87 -1.46 -0.01 0.66 0.39 0.39

(0.54) (0.33) (0.54) (0.59) (0.81) (0.59) (0.21) (0.16) (0.40)

Technology shocks

Equipment and consumer 

durables

Consumption (nondurables and 

services)
Net Exports

 
 

 

Notes: Instrumental variables regressions from 1963-2005.  All variables are in annual growth rates.  Dependent variables are shown in the 

left column.  Regressors are current and lagged values of BFK final-use-sector technology shocks shown, along with a constant term (not shown).  

Instruments are corresponding variables where the terms of trade and technology in agriculture, mining, and government enterprises are zeroed out 

before aggregation.  Heteroskedastic and auto-correlation robust standard errors in parentheses  
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Table 7 Regression results for other variables 

 

dzjecd dzjecd(-1) dzjecd(-2) dzc dzc(-1) dzc(-2) dznx dznx(-1) dznx(-2) R
2

1 Hours -0.73 -0.48 0.29 0.00 0.66 -0.38 -0.01 0.08 0.21 0.41

(0.23) (0.17) (0.24) (0.31) (0.32) (0.30) (0.12) (0.07) (0.15)

2 Wage 0.19 -0.12 -0.32 0.87 0.13 -0.22 -0.41 0.00 -0.25 0.26

(Jorgenson) (0.24) (0.16) (0.24) (0.35) (0.30) (0.26) (0.18) (0.09) (0.16)

3 GDP deflator -0.20 -0.18 -0.17 0.07 0.17 -0.12 -0.14 -0.19 -0.05 0.00

(Jorgenson, GCV-adj.) (0.16) (0.18) (0.21) (0.28) (0.30) (0.33) (0.12) (0.05) (0.10)

4 Rel price: CNDS to Equip 0.00 -0.09 0.16 -0.26 -0.03 -0.24 -0.07 0.19 0.14 0.00

(Jorgenson, GCV-adj.) (0.23) (0.10) (0.15) (0.14) (0.16) (0.21) (0.10) (0.07) (0.14)

5 Con. price -0.16 -0.21 -0.12 0.04 0.11 -0.20 -0.24 -0.13 -0.02 0.00

(Jorgenson, GCV-adj.) (0.17) (0.16) (0.22) (0.27) (0.28) (0.31) (0.13) (0.04) (0.11)

6 Equip price -0.16 -0.12 -0.28 0.30 0.14 0.04 -0.16 -0.32 -0.16 0.03

(Jorgenson, GCV-adj.) (0.22) (0.19) (0.18) (0.28) (0.29) (0.30) (0.10) (0.08) (0.14)

7 Fed Funds Rate -0.14 -0.59 -0.40 -0.79 -0.13 -0.41 -0.17 0.05 -0.01 0.21

(0.27) (0.26) (0.29) (0.29) (0.23) (0.37) (0.17) (0.07) (0.15)

8 10-year Treasury -0.32 -0.42 -0.28 -0.40 -0.38 -0.34 0.06 0.07 0.10 0.24

(0.19) (0.26) (0.26) (0.30) (0.34) (0.33) (0.12) (0.05) (0.13)

Technology shocks

Equipment and consumer durables
Consumption (nondurables and 

services)
Net Exports

 
Notes: Instrumental variables regressions from 1963-2005.  All variables except interest rates are in annual growth rates; interest rates are 

entered in levels.  Dependent variables are shown in the left column.   Regressors are current and lagged values of BFK final-use-sector technology 

shocks shown, along with a constant term (not shown).  Regressions with prices or the wage also include decade dummies for the 1970s and 1980s.  

Instruments are corresponding variables where the terms of trade and technology in agriculture, mining, and government enterprises are zeroed out 

before aggregation.  Heteroskedastic and auto-correlation robust standard errors in parentheses .



 

Table 8:  Regressing Relative Price on Relative Technologies 

 

  

Relative Technology (Lag) 
 

Cumulative 

  
0 1 2 3 

 
effect 

Relative Price 0.28 0.15 0.17 0.23 
 

0.83 

  
(0.13) (0.20) (0.14) (0.19) 

 
(0.31) 

 

Note: Left-hand-side variable is price of consumption relative to equipment investment.  

Right-hand-side variables are current and two lags of relative equipment technology change.
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Figure 1: Cumulated Final-Use Sector BFK Technology Series 
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Note: All series are calculated by cumulating log changes of BFK-adjusted technology 

from 1961-2005.  The value for 1960 is normalized to zero. 
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Figure 2: Relative Prices, Relative TFP, and Relative Technology 
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Figure 3: Fitted values of hours and equipment to technology 
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Fitted values are from regressions shown in Tables 6 and 7. 


